206 research outputs found

    Abnormal wave reflections and left ventricular hypertrophy late after coarctation of the aorta repair

    Get PDF
    Patients with repaired coarctation of the aorta are thought to have increased afterload due to abnormalities in vessel structure and function. We have developed a novel cardiovascular magnetic resonance protocol that allows assessment of central hemodynamics, including central aortic systolic blood pressure, resistance, total arterial compliance, pulse wave velocity, and wave reflections. The main study aims were to (1) characterize group differences in central aortic systolic blood pressure and peripheral systolic blood pressure, (2) comprehensively evaluate afterload (including wave reflections) in the 2 groups, and (3) identify possible biomarkers among covariates associated with elevated left ventricular mass (LVM). Fifty adult patients with repaired coarctation and 25 age- and sex-matched controls were recruited. Ascending aorta area and flow waveforms were obtained using a high temporal-resolution spiral phase-contrast cardiovascular magnetic resonance flow sequence. These data were used to derive central hemodynamics and to perform wave intensity analysis noninvasively. Covariates associated with LVM were assessed using multivariable linear regression analysis. There were no significant group differences (P≥0.1) in brachial systolic, mean, or diastolic BP. However central aortic systolic blood pressure was significantly higher in patients compared with controls (113 versus 107 mm Hg, P=0.002). Patients had reduced total arterial compliance, increased pulse wave velocity, and larger backward compression waves compared with controls. LVM index was significantly higher in patients than controls (72 versus 59 g/m(2), P<0.0005). The magnitude of the backward compression waves was independently associated with variation in LVM (P=0.01). Using a novel, noninvasive hemodynamic assessment, we have shown abnormal conduit vessel function after coarctation of the aorta repair, including abnormal wave reflections that are associated with elevated LVM

    Fluid-structure interaction simulation of (repaired) aortic coarctation

    Get PDF

    Differential impact of local stiffening and narrowing on hemodynamics in repaired aortic coarctation: an FSI study

    Get PDF
    Even after successful treatment of aortic coarctation, a high risk of cardiovascular morbidity and mortality remains. Uncertainty exists on the factors contributing to this increased risk among which are the presence of (1) a residual narrowing leading to an additional resistance and (2) a less distensible zone disturbing the buffer function of the aorta. As the many interfering factors and adaptive physiological mechanisms present in vivo prohibit the study of the isolated impact of these individual factors, a numerical fluid-structure interaction model is developed to predict central hemodynamics in coarctation treatment. The overall impact of a stiffening on the hemodynamics is limited, with a small increase in systolic pressure (up to 8 mmHg) proximal to the stiffening which is amplified with increasing stiffening and length. A residual narrowing, on the other hand, affects the hemodynamics significantly. For a short segment (10 mm), the combination of a stiffening and narrowing (coarctation index 0.5) causes an increase in systolic pressure of 58 mmHg, with 31 mmHg due to narrowing and an additional 27 mmHg due to stiffening. For a longer segment (25 mm), an increase in systolic pressure of 50 mmHg is found, of which only 9 mmHg is due to stiffening

    The role of aortic compliance in determination of coarctation severity: Lumped parameter modeling, in vitro study and clinical evaluation

    Get PDF
    Early detection and accurate estimation of the extent of coarctation of the aorta (COA) is critical to long-term outcome. Peak-to-peak trans-coarctation pressure gradient (PKdP) higher than 20 mmHg is an indication for interventional/surgical repair. Patients with COA have reduced proximal and distal aortic compliances. A comprehensive study investigating the effects of variations of proximal COA and systemic compliances on PKdP, and consequently on the COA severity evaluation has never been done. This study evaluates the effect of aortic compliance on diagnostic accuracy of PKdP. Lumped parameter modeling and in vitro experiments were performed for COA severities of 50%, 75% and 90% by area. Modeling and in vitro results were validated against retrospective clinical data of PKdP, measured in 54 patients with COA. Modeling and in vitro. PKdP increases with reduced proximal COA compliance (+36%, +38% and +53% for COA severities of 50%, 75% and 90%, respectively; p<0.05), but decreases with reduced systemic compliance (−62%, −41% and −36% for COA severities of 50%, 75% and 90%, respectively; p<0.01). Clinical study. PKdP has a modest correlation with COA severity (R=0.29). The main determinants of PKdP are COA severity, stroke volume index and systemic compliance. Systemic compliance was found to be as influential as COA severity in PKdP determination (R=0.30 vs. R =0.34). In conclusion, PKdP is highly influenced by both stroke volume index and arterial compliance. Low values of PKdP cannot be used to exclude the severe COA presence since COA severity may be masked by reduced systemic compliance and/or low flow conditions

    Tuning of boundary conditions parameters for hemodynamics simulation using patient data

    Get PDF
    This thesis describes an engineering workflow, which allows specification of boundary conditions and 3D simulation based on clinically available patient-specific data. A review of numerical models used to describe the cardiovascular system is provided, with a particular focus on the clinical target disease chosen for the toolkit, aortic coarctation. Aorta coarctation is the fifth most common congenital heart disease, characterized by a localized stenosis of the descending thoracic aorta. Current diagnosis uses invasive pressure measurement with rare but potential complications. The principal objective of this work was to develop a tool that can be translated into the clinic, requiring minimum operator input and time, capable of returning meaningful results from data typically acquired in clinical practice. Linear and nonlinear 1D modelling approaches are described, tested against full 3D solutions derived for idealized geometries of increasing complexityand for a patient-specific aortic coarctation. The 1D linear implementation is able to represent the fluid dynamic in simple idealized benchmarks with a limited effort in terms of computational time, but in a more complex case, such as a mild aortic coarctation, it is unable to predict well 3D fluid dynamic features. On the other side, the 1D nonlinear implementation showed a good agreement when compared to 3D pressure and flow waveforms, making it suitable to estimate outflow boundary conditions for subject-specific models. A cohort of 11 coarctation patients was initially used for a preliminary analysis using 0D models of increasing complexity to examine parameters derived when tuning models of the peripheral circulation. The first circuit represents the aortic coarctation as a nonlinear resistance, using the Bernoulli pressure drop equation, without considering the effect of downstream circulation. The second circuit include a peripheral resistance and compliance, and separate ascending and descending aortic pressure responses. In the third circuit a supra-aortic Windkessel model was added in order to include the supra-aortic circulation. The analysis detailed represents a first attempt to assess the interaction between local aortic haemodynamics and subject-specific parameterization of windkessel representations of the peripheral and supra-aortic circulation using clinically measured data. From the analysis of these 0D models, it is clear that the significance of the coarctation becomes less from the simple two resistance model to the inclusion of both the peripheral and supra-aortic circulation. These results provide a context within which to interpret outcomes of the tuning process reported for a more complex model of aortic haemodynamics using 1D and 3D model approaches. Earlier developments are combined to enable a multi-scale modelling approach to simulate fluid-dynamics. This includes non-linear 1D models to derive patient-specific parameters for the peripheral and supra-aortic circulation followed by transient analysis of a coupled 3D/0D system to estimate the coarctation pressure augmentation. These predictions are compared with invasively measured catheter data and the influence of uncertainty in measured data on the tuning process is discussed. This study has demonstrated the feasibility of constructing a workflow using non-invasive routinely collected clinical data to predict the pressure gradient in coarctation patients using patient specific CFD simulation, with relatively low levels of user interaction required. The results showed that the model is not suitable for the clinical use at this stage, thus further work is required to enhance the tuning process to improve agreement with measured catheter data. Finally, a preliminary approach for the assessment of change in haemodynamics following coarctation repair, where the coarctation region is enlarged through a virtual intervention process. The CFD approach reported can be expanded to explore the sensitivity of the peak ascending aortic pressure and descending aortic flow to the aortic diameter achieved following intervention, such an analysis would provide guidance for surgical intervention to target the optimal diameter to restore peripheral perfusion and reduce cerebral hypertension

    Computational fluid dynamics indicators to improve cardiovascular pathologies

    Get PDF
    In recent years, the study of computational hemodynamics within anatomically complex vascular regions has generated great interest among clinicians. The progress in computational fluid dynamics, image processing and high-performance computing haveallowed us to identify the candidate vascular regions for the appearance of cardiovascular diseases and to predict how this disease may evolve. Medicine currently uses a paradigm called diagnosis. In this thesis we attempt to introduce into medicine the predictive paradigm that has been used in engineering for many years. The objective of this thesis is therefore to develop predictive models based on diagnostic indicators for cardiovascular pathologies. We try to predict the evolution of aortic abdominal aneurysm, aortic coarctation and coronary artery disease in a personalized way for each patient. To understand how the cardiovascular pathology will evolve and when it will become a health risk, it is necessary to develop new technologies by merging medical imaging and computational science. We propose diagnostic indicators that can improve the diagnosis and predict the evolution of the disease more efficiently than the methods used until now. In particular, a new methodology for computing diagnostic indicators based on computational hemodynamics and medical imaging is proposed. We have worked with data of anonymous patients to create real predictive technology that will allow us to continue advancing in personalized medicine and generate more sustainable health systems. However, our final aim is to achieve an impact at a clinical level. Several groups have tried to create predictive models for cardiovascular pathologies, but they have not yet begun to use them in clinical practice. Our objective is to go further and obtain predictive variables to be used practically in the clinical field. It is to be hoped that in the future extremely precise databases of all of our anatomy and physiology will be available to doctors. These data can be used for predictive models to improve diagnosis or to improve therapies or personalized treatments.En els últims anys, l'estudi de l'hemodinàmica computacional en regions vasculars anatòmicament complexes ha generat un gran interès entre els clínics. El progrés obtingut en la dinàmica de fluids computacional, en el processament d'imatges i en la computació d'alt rendiment ha permès identificar regions vasculars on poden aparèixer malalties cardiovasculars, així com predir-ne l'evolució. Actualment, la medicina utilitza un paradigma anomenat diagnòstic. En aquesta tesi s'intenta introduir en la medicina el paradigma predictiu utilitzat des de fa molts anys en l'enginyeria. Per tant, aquesta tesi té com a objectiu desenvolupar models predictius basats en indicadors de diagnòstic de patologies cardiovasculars. Tractem de predir l'evolució de l'aneurisma d'aorta abdominal, la coartació aòrtica i la malaltia coronària de forma personalitzada per a cada pacient. Per entendre com la patologia cardiovascular evolucionarà i quan suposarà un risc per a la salut, cal desenvolupar noves tecnologies mitjançant la combinació de les imatges mèdiques i la ciència computacional. Proposem uns indicadors que poden millorar el diagnòstic i predir l'evolució de la malaltia de manera més eficient que els mètodes utilitzats fins ara. En particular, es proposa una nova metodologia per al càlcul dels indicadors de diagnòstic basada en l'hemodinàmica computacional i les imatges mèdiques. Hem treballat amb dades de pacients anònims per crear una tecnologia predictiva real que ens permetrà seguir avançant en la medicina personalitzada i generar sistemes de salut més sostenibles. Però el nostre objectiu final és aconseguir un impacte en l¿àmbit clínic. Diversos grups han tractat de crear models predictius per a les patologies cardiovasculars, però encara no han començat a utilitzar-les en la pràctica clínica. El nostre objectiu és anar més enllà i obtenir variables predictives que es puguin utilitzar de forma pràctica en el camp clínic. Es pot preveure que en el futur tots els metges disposaran de bases de dades molt precises de tota la nostra anatomia i fisiologia. Aquestes dades es poden utilitzar en els models predictius per millorar el diagnòstic o per millorar teràpies o tractaments personalitzats.Postprint (published version

    Arterial pulse wave modeling and analysis for vascular-age studies: a review from VascAgeNet

    Get PDF
    Aging; Arteriosclerosis; HemodynamicsEnvelliment; Arteriosclerosi; HemodinàmicaEnvejecimiento; Arteriosclerosis; HemodinámicaArterial pulse waves (PWs) such as blood pressure and photoplethysmogram (PPG) signals contain a wealth of information on the cardiovascular (CV) system that can be exploited to assess vascular age and identify individuals at elevated CV risk. We review the possibilities, limitations, complementarity, and differences of reduced-order, biophysical models of arterial PW propagation, as well as theoretical and empirical methods for analyzing PW signals and extracting clinically relevant information for vascular age assessment. We provide detailed mathematical derivations of these models and theoretical methods, showing how they are related to each other. Finally, we outline directions for future research to realize the potential of modeling and analysis of PW signals for accurate assessment of vascular age in both the clinic and in daily life.This article is based upon work from COST Action “Network for Research in Vascular Ageing” (VascAgeNet, CA18216), supported by COST (European Cooperation in Science and Technology, www.cost.eu). This work was supported by British Heart Foundation Grants PG/15/104/31913 (to J.A. and P.H.C.), FS/20/20/34626 (to P.H.C.), and AA/18/6/34223, PG/17/90/33415, SPG 2822621, and SP/F/21/150020 (to A.D.H.); Kaunas University of Technology Grant INP2022/16 (to B.P.); European Research Executive Agency, Marie-Sklodowska Curie Actions Individual Fellowship Grant 101038096 (to S.P.); Istinye University, BAP Project Grant 2019B1 (to S.P.); “la Caixa” Foundation Grant LCF/BQ/PR22/11920008 (to A.G.); and National Institute for Health and Care Research Grant AI AWARD02499 and EU Horizon 2020 Grant H2020 848109 (to A.D.H.)

    Arterial pulse wave modelling and analysis for vascular age studies: a review from VascAgeNet

    Get PDF
    Arterial pulse waves (PWs) such as blood pressure and photoplethysmogram (PPG) signals contain a wealth of information on the cardiovascular (CV) system that can be exploited to assess vascular age and identify individuals at elevated CV risk. We review the possibilities, limitations, complementarity, and differences of reduced-order, biophysical models of arterial PW propagation, as well as theoretical and empirical methods for analyzing PW signals and extracting clinically relevant information for vascular age assessment. We provide detailed mathematical derivations of these models and theoretical methods, showing how they are related to each other. Finally, we outline directions for future research to realize the potential of modeling and analysis of PW signals for accurate assessment of vascular age in both the clinic and in daily life
    corecore