990 research outputs found

    Multidimensional sampling for simulation and integration: measures, discrepancies, and quasi-random numbers

    Get PDF
    This is basically a review of the field of Quasi-Monte Carlo intended for computational physicists and other potential users of quasi-random numbers. As such, much of the material is not new, but is presented here in a style hopefully more accessible to physicists than the specialized mathematical literature. There are also some new results: On the practical side we give important empirical properties of large quasi-random point sets, especially the exact quadratic discrepancies; on the theoretical side, there is the exact distribution of quadratic discrepancy for random point sets.Comment: 51 pages. Full paper, including all figures also available at: ftp://ftp.nikhef.nl/pub/preprints/96-017.ps.gz Accepted for publication in Comp.Phys.Comm. Fixed some typos, corrected formula 108,figure 11 and table

    Acoustical Ranging Techniques in Embedded Wireless Sensor Networked Devices

    Get PDF
    Location sensing provides endless opportunities for a wide range of applications in GPS-obstructed environments; where, typically, there is a need for higher degree of accuracy. In this article, we focus on robust range estimation, an important prerequisite for fine-grained localization. Motivated by the promise of acoustic in delivering high ranging accuracy, we present the design, implementation and evaluation of acoustic (both ultrasound and audible) ranging systems.We distill the limitations of acoustic ranging; and present efficient signal designs and detection algorithms to overcome the challenges of coverage, range, accuracy/resolution, tolerance to Doppler’s effect, and audible intensity. We evaluate our proposed techniques experimentally on TWEET, a low-power platform purpose-built for acoustic ranging applications. Our experiments demonstrate an operational range of 20 m (outdoor) and an average accuracy 2 cm in the ultrasound domain. Finally, we present the design of an audible-range acoustic tracking service that encompasses the benefits of a near-inaudible acoustic broadband chirp and approximately two times increase in Doppler tolerance to achieve better performance

    Statistical Spectral Parameter Estimation of Acoustic Signals with Applications to Byzantine Music

    Get PDF
    Digitized acoustical signals of Byzantine music performed by Iakovos Nafpliotis are used to extract the fundamental frequency of each note of the diatonic scale. These empirical results are then contrasted to the theoretical suggestions and previous empirical findings. Several parametric and non-parametric spectral parameter estimation methods are implemented. These include: (1) Phase vocoder method, (2) McAulay-Quatieri method, (3) Levinson-Durbin algorithm,(4) YIN, (5) Quinn & Fernandes Estimator, (6) Pisarenko Frequency Estimator, (7) MUltiple SIgnal Characterization (MUSIC) algorithm, (8) Periodogram method, (9) Quinn & Fernandes Filtered Periodogram, (10) Rife & Vincent Estimator, and (11) the Fourier transform. Algorithm performance was very precise. The psychophysical aspect of human pitch discrimination is explored. The results of eight (8) psychoacoustical experiments were used to determine the aural just noticeable difference (jnd) in pitch and deduce patterns utilized to customize acceptable performable pitch deviation to the application at hand. These customizations [Acceptable Performance Difference (a new measure of frequency differential acceptability), Perceptual Confidence Intervals (a new concept of confidence intervals based on psychophysical experiment rather than statistics of performance data), and one based purely on music-theoretical asymphony] are proposed, discussed, and used in interpretation of results. The results suggest that Nafpliotis\u27 intervals are closer to just intonation than Byzantine theory (with minor exceptions), something not generally found in Thrasivoulos Stanitsas\u27 data. Nafpliotis\u27 perfect fifth is identical to the just intonation, even though he overstretches his octaveby fifteen (15)cents. His perfect fourth is also more just, as opposed to Stanitsas\u27 fourth which is directionally opposite. Stanitsas\u27 tendency to exaggerate the major third interval A4-F4 is still seen in Nafpliotis, but curbed. This is the only noteworthy departure from just intonation, with Nafpliotis being exactly Chrysanthian (the most exaggerated theoretical suggestion of all) and Stanitsas overstretching it even more than Nafpliotis and Chrysanth. Nafpliotis ascends in the second tetrachord more robustly diatonically than Stanitsas. The results are reported and interpreted within the framework of Acceptable Performance Differences

    Pseudo-random graphs

    Full text link
    Random graphs have proven to be one of the most important and fruitful concepts in modern Combinatorics and Theoretical Computer Science. Besides being a fascinating study subject for their own sake, they serve as essential instruments in proving an enormous number of combinatorial statements, making their role quite hard to overestimate. Their tremendous success serves as a natural motivation for the following very general and deep informal questions: what are the essential properties of random graphs? How can one tell when a given graph behaves like a random graph? How to create deterministically graphs that look random-like? This leads us to a concept of pseudo-random graphs and the aim of this survey is to provide a systematic treatment of this concept.Comment: 50 page

    Public keys quality

    Get PDF
    Dissertação de mestrado em Matemática e ComputaçãoThe RSA cryptosystem, invented by Ron Rivest, Adi Shamir and Len Adleman ([Rivest et al., 1978]) is the most commonly used cryptosystem for providing privacy and ensuring authenticity of digital data. RSA is usually used in contexts where security of digital data is priority. RSA is used worldwide by web servers and browsers to secure web traffic, to ensure privacy and authenticity of e-mail, to secure remote login sessions and to provide secure electronic creditcard payment systems. Given its importance in the protection of digital data, vulnerabilities of RSA have been analysed by many researchers. The researches made so far led to a number of fascinating attacks. Although the attacks helped to improve the security of this cryptosystem, showing that securely implementing RSA is a nontrivial task, none of them was devastating. This master thesis discusses the RSA cryptosystem and some of its vulnerabilities as well as the description of some attacks, both recent and old, together with the description of the underlying mathematical tools they use. Although many types of attacks exist, in this master thesis only a few examples were analysed. The ultimate attack, based in the batch-GCD algorithm, was implemented and tested in the RSA keys produced by a certificated Hardware Security Modules Luna SA and the results were commented. The random and pseudorandom numbers are fundamental to many cryptographic applications, including the RSA cryptosystems. In fact, the produced keys must be generated in a specific random way. The National Institute of Standards and Technology, responsible entity for specifying safety standards, provides a package named "A Statistical Test Suit for Random and Pseudorandom Number Generators for Cryptography Applications" which was used in this work to test the randomness of the Luna SA generated numbers. All the statistical tests were tested in different bit sizes number and the results commented. The main purpose of this thesis is to study the previous subjects and create an applications capable to test the Luna SA generated numbers randomness, a well as evaluate the security of the RSA. This work was developed in partnership with University of Minho and Multicert.O RSA, criado por Ron Rivest, Adi Shamir e Len Adleman ([Rivest et al., 1978]) é o sistema criptográfico mais utilizado para providenciar segurança e assegurar a autenticação de dados utilizados no mundo digital. O RSA é usualmente usado em contextos onde a segurança é a grande prioridade. Hoje em dia, este sistema criptográfico é utilizado mundialmente por servidores web e por browsers, por forma a assegurar um tráfego seguro através da Internet. É o sistema criptográfico mais utilizado na autenticação de e-mails, nos inícios de sessões remotos, na utilização de pagamentos através de cartões multibanco, garantindo segurança na utilização destes serviços. Dada a importância que este sistema assume na proteção da informação digital, as suas vulnerabilidades têm sido alvo de várias investigações. Estas investigações resultaram em vários ataques ao RSA. Embora nenhum destes ataques seja efetivamente eficaz, todos contribuíram para um aumento da segurança do RSA, uma vez que as implementações de referência deste algoritmo passaram a precaver-se contra os ataques descobertos. Esta tese de mestrado aborda o sistema criptográfico RSA, discutindo algumas das suas vulnerabilidades, assim como alguns ataques efetuados a este sistema, estudando todos os métodos matemáticos por estes usados. Embora existam diversos ataques, apenas alguns serão abordados nesta tese de mestrado. O último ataque, baseado no algoritmo batch-GCD foi implementado e foram feitos testes em chaves RSA produzidas por um Hardware Security Module Luna SA certificado e os resultados obtidos foram discutidos. Os números aleatórios e pseudoaleatórios são fundamentais a todas as aplicações criptográficas, incluindo, portanto, o sistema criptográfico RSA. De facto, as chaves produzidas deverão ser geradas com alguma aleatoriedade intrínseca ao sistema. O Instituto Nacional de Standards e Tecnologia, entidade responsável pela especificação dos standards de segurança, disponibiliza um pacote de testes estatísticos, denominado por "A Statistical Test Suit for Random and Pseudorandom Number Generators for Cryptography Applications". Estes testes estatísticos foram aplicados a números gerados pelo Luna SA e os resultados foram, também, comentados. O objetivo desta tese de mestrado é desenvolver capacidade de compreensão sobre os assuntos descritos anteriormente e criar uma aplicação capaz de testar a aleatoriedade dos números gerados pelo Luna SA, assim como avaliar a segurança do sistema criptográfico RSA. Este foi um trabalho desenvolvido em parceria com a Universidade do Minho e com a Multicert

    On 3-D inelastic analysis methods for hot section components (base program)

    Get PDF
    A 3-D Inelastic Analysis Method program is described. This program consists of a series of new computer codes embodying a progression of mathematical models (mechanics of materials, special finite element, boundary element) for streamlined analysis of: (1) combustor liners, (2) turbine blades, and (3) turbine vanes. These models address the effects of high temperatures and thermal/mechanical loadings on the local (stress/strain)and global (dynamics, buckling) structural behavior of the three selected components. Three computer codes, referred to as MOMM (Mechanics of Materials Model), MHOST (Marc-Hot Section Technology), and BEST (Boundary Element Stress Technology), have been developed and are briefly described in this report
    • …
    corecore