56 research outputs found

    A posteriori mesh method for a system of singularly perturbed initial value problems

    Get PDF
    A system of singularly perturbed initial value problems with weak constrained conditions on the coefficients is considered. First the system of second-order singularly perturbed problems is transformed into a system of first-order singularly perturbed problems with integral terms, which facilitates the subsequent stability and a posteriori error analyses. Then a hybrid difference method with the use of interpolating quadrature rules is utilized to approximate the transformed system. Next a posteriori error analysis for the discretization scheme on an arbitrary mesh is presented. A solution-adaptive algorithm based on a posteriori error estimation is devised to generate a posteriori mesh and obtain approximation solution. Finally numerical experiments show a uniform convergence behavior of second-order for the scheme, which improves the previous results and achieves the optimal convergence order under the given discrete scheme

    Uniform numerical approximation for parameter dependent singularly perturbed problem with integral boundary condition

    Get PDF
    WOS: 000441460300026In this paper, a parameter-uniform numerical method for a parameterized singularly perturbed ordinary differential equation containing integral boundary condition is studied. Asymptotic estimates on the solution and its derivatives are derived. A numerical algorithm based on upwind finite difference operator and an appropriate piecewise uniform mesh is constructed. Parameter-uniform error estimate for the numerical solution is established. Numerical results are presented, which illustrate the theoretical results

    Efficient Resolution of Anisotropic Structures

    Get PDF
    We highlight some recent new delevelopments concerning the sparse representation of possibly high-dimensional functions exhibiting strong anisotropic features and low regularity in isotropic Sobolev or Besov scales. Specifically, we focus on the solution of transport equations which exhibit propagation of singularities where, additionally, high-dimensionality enters when the convection field, and hence the solutions, depend on parameters varying over some compact set. Important constituents of our approach are directionally adaptive discretization concepts motivated by compactly supported shearlet systems, and well-conditioned stable variational formulations that support trial spaces with anisotropic refinements with arbitrary directionalities. We prove that they provide tight error-residual relations which are used to contrive rigorously founded adaptive refinement schemes which converge in L2L_2. Moreover, in the context of parameter dependent problems we discuss two approaches serving different purposes and working under different regularity assumptions. For frequent query problems, making essential use of the novel well-conditioned variational formulations, a new Reduced Basis Method is outlined which exhibits a certain rate-optimal performance for indefinite, unsymmetric or singularly perturbed problems. For the radiative transfer problem with scattering a sparse tensor method is presented which mitigates or even overcomes the curse of dimensionality under suitable (so far still isotropic) regularity assumptions. Numerical examples for both methods illustrate the theoretical findings

    A nonstandard fitted operator finite difference method for two-parameter singularly perturbed time-delay parabolic problems

    Get PDF
    In this article, a class of singularly perturbed time-delay two-parameter second-order parabolic problems are considered. The presence of the two small parameters attached to the derivatives causes the solution of the given problem to exhibit boundary layer(s). We have developed a uniformly convergent nonstandard fitted operator finite difference method (NSFOFDM) to solve the considered problems. The Crank-Nicolson scheme with a uniform mesh is used for the discretization of the time derivative, while for the spatial discretization, we have applied a fitted operator finite difference method following the nonstandard methodology of Mickens. Moreover, the solution bounds of the governing equation are shown by asymptotic analysis. The convergence of the proposed numerical scheme is investigated using truncation error and the barrier function approach. The study shows that our proposed scheme is uniformly convergent independent of the perturbation parameters, quadratically in time, and linearly in space. Numerical experiments are carried out, and the results are presented in tables and graphically

    Solving nonlinear integral equations with non-separable kernel via a high-order iterative process

    Full text link
    [EN] In this work we focus on location and approximation of a solution of nonlinear integral equations of Hammerstein-type when the kernel is non-separable through a high order iterative process. For this purpose, we approximate the non-separable kernel by means of a separable kernel and then, we perform a complete study about the convergence criteria for the approximated solution obtained to the solution of our first problem. Different examples have been tested in order to apply our theoretical results.This research was partially supported by Ministerio de Economia y Competitividad under grant PGC2018-095896-B-C21-C22 and by the project EEQ/2018/000720 under Science and Engineering Research Board.Hernández-Verón, MA.; Yadav, S.; Martínez Molada, E.; Singh, S. (2021). Solving nonlinear integral equations with non-separable kernel via a high-order iterative process. Applied Mathematics and Computation. 409:1-12. https://doi.org/10.1016/j.amc.2021.126385S11240

    Innovative Approaches to the Numerical Approximation of PDEs

    Get PDF
    This workshop was about the numerical solution of PDEs for which classical approaches, such as the finite element method, are not well suited or need further (theoretical) underpinnings. A prominent example of PDEs for which classical methods are not well suited are PDEs posed in high space dimensions. New results on low rank tensor approximation for those problems were presented. Other presentations dealt with regularity of PDEs, the numerical solution of PDEs on surfaces, PDEs of fractional order, numerical solvers for PDEs that converge with exponential rates, and the application of deep neural networks for solving PDEs

    Analytical investigations and numerical experiments for singularly perturbed convection-diffusion problems with layers and singularities using a newly developed FE-software

    Get PDF
    In the field of singularly perturbed reaction- or convection-diffusion boundary value problems the research area of a priori error analysis for the finite element method, has already been thoroughly investigated. In particular, for mesh adapted methods and/or various stabilization techniques, works have been done that prove optimal rates of convergence or supercloseness uniformly in the perturbation parameter epsilon. Commonly, however, it is assumed that the exact solution behaves nicely in that it obeys certain regularity assumptions although in general, e.g. due to corner singularities, these regularity requirements are not satisfied. So far, insufficient regularity has been met by assuming compatibility conditions on the data. The present thesis originated from the question: What can be shown if these rather unrealistic additional assumptions are dropped? We are interested in epsilon-uniform a priori estimates for convergence and superconvergence that include some regularity parameter that is adjustable to the smoothness of the exact solution. A major difficulty that occurs when seeking the numerical error decay is that the exact solution is not known. Since we strive for reliable rates of convergence we want to avoid the standard approach of the "double-mesh principle". Our choice is to use reference solutions as a substitute for the exact solution. Numerical experiments are intended to confirm the theoretical results and to bring further insights into the interplay between layers and singularities. To computationally realize the thereby arising demanding practical aspects of the finite element method, a new software is developed that turns out to be particularly suited for the needs of the numerical analyst. Its design, features and implementation is described in detail in the second part of the thesis

    Adaptive Finite Element Methods for Parameter Identification Problems

    Get PDF
    The aim of this work is the analysis of parameter identification problems and the development of efficient numerical algorithms for their solution, based on adaptive finite element methods. Since, in general, the computational effort for solving the arising optimization problems exceeds significantly the cost for a simple simulation, the question of choosing efficient (cheap) discretizations is crucial for applications. Our approach to this question is based on the a posteriori error estimation for finite element discretization of the problem. We derive a posteriori error estimators to be used in an adaptive mesh refinement algorithm producing economical meshes for parameter identification. The methods developed in this thesis are applied to parameter identification in fluid dynamics and to estimation of chemical models in multidimensional reactive flow problems

    Space-time Methods for Time-dependent Partial Differential Equations

    Get PDF
    Modern discretizations of time-dependent PDEs consider the full problem in the space-time cylinder and aim to overcome limitations of classical approaches such as the method of lines (first discretize in space and then solve the resulting ODE) and the Rothe method (first discretize in time and then solve the PDE). A main advantage of a holistic space-time method is the direct access to space-time adaptivity and to the backward problem (required for the dual problem in optimization or error control). Moreover, this allows for parallel solution strategies simultaneously in time and space. Several space-time concepts where proposed (different conforming and nonconforming space-time finite elements, the parareal method, wavefront relaxation etc.) but this topic has become a rapidly growing field in numerical analysis and scientific computing. In this workshop the focus is the development of adaptive and flexible space-time discretization methods for solving parabolic and hyperbolic space-time partial differential equations
    • …
    corecore