1,938 research outputs found

    Fog-supported delay-constrained energy-saving live migration of VMs over multiPath TCP/IP 5G connections

    Get PDF
    The incoming era of the fifth-generation fog computing-supported radio access networks (shortly, 5G FOGRANs) aims at exploiting computing/networking resource virtualization, in order to augment the limited resources of wireless devices through the seamless live migration of virtual machines (VMs) toward nearby fog data centers. For this purpose, the bandwidths of the multiple wireless network interface cards of the wireless devices may be aggregated under the control of the emerging MultiPathTCP (MPTCP) protocol. However, due to the fading and mobility-induced phenomena, the energy consumptions of the current state-of-the-art VM migration techniques may still offset their expected benefits. Motivated by these considerations, in this paper, we analytically characterize and implement in software and numerically test the optimal minimum-energy settable-complexity bandwidth manager (SCBM) for the live migration of VMs over 5G FOGRAN MPTCP connections. The key features of the proposed SCBM are that: 1) its implementation complexity is settable on-line on the basis of the target energy consumption versus implementation complexity tradeoff; 2) it minimizes the network energy consumed by the wireless device for sustaining the migration process under hard constraints on the tolerated migration times and downtimes; and 3) by leveraging a suitably designed adaptive mechanism, it is capable to quickly react to (possibly, unpredicted) fading and/or mobility-induced abrupt changes of the wireless environment without requiring forecasting. The actual effectiveness of the proposed SCBM is supported by extensive energy versus delay performance comparisons that cover: 1) a number of heterogeneous 3G/4G/WiFi FOGRAN scenarios; 2) synthetic and real-world workloads; and, 3) MPTCP and wireless connections

    When good intentions are not enough: sequential entry and competition in the Turkish mobile industry

    Get PDF
    A decade into the liberalization of the Turkish mobile industry, the sector remains one of the most concentrated in Europe. In this paper we analyze the links between the regulatory environment and competitive outcomes in the Turkish context. We argue that seven years of duopoly incumbency resulted in a significant first-mover advantage. We then focus on the role of the regulatory tools that could potentially restrain the incumbent operators’ first-mover advantage and stimulate competition: national roaming, interconnection regulation, and number portability

    Numerical study on failure process of aluminium plate subjected to normal impact by hemispherical projectiles

    Get PDF
    In this paper a study is presented on the numerical analysis of the failure process of aluminium armour plate subjected to normal impact by hemispherical projectiles. The perforation process has been simulated by the application of 3D analysis using IMPACT dynamic FE program suite. The comparison on the elements size of meshing towards failure mode was observed and evaluated. The material behaviour of the target plate was approximated by an appropriate constitutive relation. The study covered different size of meshing element on target plate as well as different level of impact velocities. Different failure modes for each case were found. For low speed impact condition a petalling was observed, whereas for high speed impact a radial neck along with a holes enlargement was observed with better and uniform perforation mode. The deformation and failure mode of the impacted target plate will be given special attention in this investigation

    Agile multi-beam front-end for 5G mm-wave measurements

    Get PDF
    The 5th generation new radio (5G NR) standards create both enormous challenges and potential to address the spatio-spectral-temporal agility of wireless transmission. In the framework of a research unit at TU Ilmenau, various concepts were studied, including both approaches toward integrated circuits and distributed receiver front-ends (FEs). We report here on the latter approach, aiming at the proof-of-principle of the constituting FEs suitable for later modular extension. A millimeter-wave agile multi-beam FE with an integrated 4 by 1 antenna array for 5G wireless communications was designed, manufactured, and verified by measurements. The polarization is continuously electronically adjustable and the directions of signal reception are steerable by setting digital phase shifters. On purpose, these functions were realized by analog circuits, and digital signal processing was not applied. The agile polarization is created inside the analog, real-time capable FE in a novel manner and any external circuitry is omitted. The microstrip patch antenna array integrated into this module necessitated elaborate measurements within the scope of FE characterization, as the analog circuit and antenna form a single entity and cannot be assessed separately. Link measurements with broadband signals were successfully performed and analyzed in detail to determine the error vector magnitude contributions of the FE
    • …
    corecore