43 research outputs found

    Energy-efficient and lifetime aware routing in WSNs

    Get PDF
    Network lifetime is an important performance metric in Wireless Sensor Networks (WSNs). Transmission Power Control (TPC) is a well-established method to minimise energy consumption in transmission in order to extend node lifetime and, consequently, lead to solutions that help extend network lifetime. The accurate lifetime estimation of sensor nodes is useful for routing to make more energy-efficient decisions and prolong lifetime. This research proposes an Energy-Efficient TPC (EETPC) mechanism using the measured Received Signal Strength (RSS) to calculate the ideal transmission power. This includes the investigation of the impact factors on RSS, such as distance, height above ground, multipath environment, the capability of node, noise and interference, and temperature. Furthermore, a Dynamic Node Lifetime Estimation (DNLE) technique for WSNs is also presented, including the impact factors on node lifetime, such as battery type, model, brand, self-discharge, discharge rate, age, charge cycles, and temperature. In addition, an Energy-Efficient and Lifetime Aware Routing (EELAR) algorithm is designed and developed for prolonging network lifetime in multihop WSNs. The proposed routing algorithm includes transmission power and lifetime metrics for path selection in addition to the Expected Transmission Count (ETX) metric. Both simulation and real hardware testbed experiments are used to verify the effectiveness of the proposed schemes. The simulation experiments run on the AVRORA simulator for two hardware platforms: Mica2 and MicaZ. The testbed experiments run on two real hardware platforms: the N740 NanoSensor and Mica2. The corresponding implementations are on two operating systems: Contiki and TinyOS. The proposed TPC mechanism covers those investigated factors and gives an overall performance better than the existing techniques, i.e. it gives lower packet loss and power consumption rates, while delays do not significantly increase. It can be applied for single-hop with multihoming and multihop networks. Using the DNLE technique, node lifetime can be predicted more accurately, which can be applied for both static and dynamic loads. EELAR gives the best performance on packet loss rate, average node lifetime and network lifetime compared to the other algorithms and no significant difference is found between each algorithm with the packet delay

    Building Realistic Mobility Models for Mobile Ad Hoc Networks

    Get PDF
    A mobile ad hoc network (MANET) is a self-configuring wireless network in which each node could act as a router, as well as a data source or sink. Its application areas include battlefields and vehicular and disaster areas. Many techniques applied to infrastructure-based networks are less effective in MANETs, with routing being a particular challenge. This paper presents a rigorous study into simulation techniques for evaluating routing solutions for MANETs with the aim of producing more realistic simulation models and thereby, more accurate protocol evaluations. MANET simulations require models that reflect the world in which the MANET is to operate. Much of the published research uses movement models, such as the random waypoint (RWP) model, with arbitrary world sizes and node counts. This paper presents a technique for developing more realistic simulation models to test and evaluate MANET protocols. The technique is animation, which is applied to a realistic scenario to produce a model that accurately reflects the size and shape of the world, node count, movement patterns, and time period over which the MANET may operate. The animation technique has been used to develop a battlefield model based on established military tactics. Trace data has been used to build a model of maritime movements in the Irish Sea. Similar world models have been built using the random waypoint movement model for comparison. All models have been built using the ns-2 simulator. These models have been used to compare the performance of three routing protocols: dynamic source routing (DSR), destination-sequenced distance-vector routing (DSDV), and ad hoc n-demand distance vector routing (AODV). The findings reveal that protocol performance is dependent on the model used. In particular, it is shown that RWP models do not reflect the performance of these protocols under realistic circumstances, and protocol selection is subject to the scenario to which it is applied. To conclude, it is possible to develop a range of techniques for modelling scenarios applicable to MANETs, and these simulation models could be utilised for the evaluation of routing protocols

    Wireless Mesh Network Performance for Urban Search and Rescue Missions

    Full text link
    In this paper we demonstrate that the Canine Pose Estimation (CPE) system can provide a reliable estimate for some poses and when coupled with effective wireless transmission over a mesh network. Pose estimates are time sensitive, thus it is important that pose data arrives at its destination quickly. Propagation delay and packet delivery ratio measuring algorithms were developed and used to appraise Wireless Mesh Network (WMN) performance as a means of carriage for this time-critical data. The experiments were conducted in the rooms of a building where the radio characteristics closely resembled those of a partially collapsed building-a typical US&R environment. This paper presents the results of the experiments, which demonstrate that it is possible to receive the canine pose estimation data in realtime although accuracy of the results depend on the network size and the deployment environment.Comment: 19 Pages, IJCNC Journa

    Self-organizing Network Optimization via Placement of Additional Nodes

    Get PDF
    Das Hauptforschungsgebiet des Graduiertenkollegs "International Graduate School on Mobile Communication" (GS Mobicom) der Technischen Universität Ilmenau ist die Kommunikation in Katastrophenszenarien. Wegen eines Desasters oder einer Katastrophe können die terrestrischen Elementen der Infrastruktur eines Kommunikationsnetzwerks beschädigt oder komplett zerstört werden. Dennoch spielen verfügbare Kommunikationsnetze eine sehr wichtige Rolle während der Rettungsmaßnahmen, besonders für die Koordinierung der Rettungstruppen und für die Kommunikation zwischen ihren Mitgliedern. Ein solcher Service kann durch ein mobiles Ad-Hoc-Netzwerk (MANET) zur Verfügung gestellt werden. Ein typisches Problem der MANETs ist Netzwerkpartitionierung, welche zur Isolation von verschiedenen Knotengruppen führt. Eine mögliche Lösung dieses Problems ist die Positionierung von zusätzlichen Knoten, welche die Verbindung zwischen den isolierten Partitionen wiederherstellen können. Hauptziele dieser Arbeit sind die Recherche und die Entwicklung von Algorithmen und Methoden zur Positionierung der zusätzlichen Knoten. Der Fokus der Recherche liegt auf Untersuchung der verteilten Algorithmen zur Bestimmung der Positionen für die zusätzlichen Knoten. Die verteilten Algorithmen benutzen nur die Information, welche in einer lokalen Umgebung eines Knotens verfügbar ist, und dadurch entsteht ein selbstorganisierendes System. Jedoch wird das gesamte Netzwerk hier vor allem innerhalb eines ganz speziellen Szenarios - Katastrophenszenario - betrachtet. In einer solchen Situation kann die Information über die Topologie des zu reparierenden Netzwerks im Voraus erfasst werden und soll, natürlich, für die Wiederherstellung mitbenutzt werden. Dank der eventuell verfügbaren zusätzlichen Information können die Positionen für die zusätzlichen Knoten genauer ermittelt werden. Die Arbeit umfasst eine Beschreibung, Implementierungsdetails und eine Evaluierung eines selbstorganisierendes Systems, welche die Netzwerkwiederherstellung in beiden Szenarien ermöglicht.The main research area of the International Graduate School on Mobile Communication (GS Mobicom) at Ilmenau University of Technology is communication in disaster scenarios. Due to a disaster or an accident, the network infrastructure can be damaged or even completely destroyed. However, available communication networks play a vital role during the rescue activities especially for the coordination of the rescue teams and for the communication between their members. Such a communication service can be provided by a Mobile Ad-Hoc Network (MANET). One of the typical problems of a MANET is network partitioning, when separate groups of nodes become isolated from each other. One possible solution for this problem is the placement of additional nodes in order to reconstruct the communication links between isolated network partitions. The primary goal of this work is the research and development of algorithms and methods for the placement of additional nodes. The focus of this research lies on the investigation of distributed algorithms for the placement of additional nodes, which use only the information from the nodes’ local environment and thus form a self-organizing system. However, during the usage specifics of the system in a disaster scenario, global information about the topology of the network to be recovered can be known or collected in advance. In this case, it is of course reasonable to use this information in order to calculate the placement positions more precisely. The work provides the description, the implementation details and the evaluation of a self-organizing system which is able to recover from network partitioning in both situations

    Wireless Mesh Network Performance for Urban Search and Rescue Missions

    Get PDF
    in this paper we demonstrate that the Canine Pose Estimation (CPE) system can provide a reliable estimate for some poses and when coupled with effective wireless transmission over a mesh network. Pose estimates are time sensitive, thus it is important that pose data arrives at its destination quickly. Propagation delay and packet delivery ratio measuring algorithms were developed and used to appraise Wireless Mesh Network (WMN) performance as a means of carriage for this time-critical data. The experiments were conducted in the rooms of a building where the radio characteristics closely resembled those of a partially collapsed building-a typical US&R environment. This paper presents the results of the experiments, which demonstrate that it is possible to receive the canine pose estimation data in realtime although accuracy of the results depend on the network size and the deployment environment

    Routing Protocols for Meshed Communication, Networks Targeting Communication Quality of Service (QoS) in Rural Areas

    Get PDF
    Rural areas in Africa often have poor telecommunication infrastructure. Mobile phones, if available, are frequently unaffordable to most users. Wireless mesh networks (WMNs) offer an alternative possibility of low cost voice and data communications. The focus of this research is a laboratory study of WMNs that mimic conditions found in rural areas. This work investigates routing strategies for the Mesh Potato (MP). The MP is an effective alternative communication technology that has minimal configuration requirements, low cost of deployment, low power consumption and resilience that make it an attractive choice for rural areas. The MP runs a new mesh networking algorithm called the better approach to mobile ad hoc networking (B.A.T.M.A.N or Batman). This allows a WMN to be established in which users can use plain old telephones to talk to each other using Voice over IP (VoIP). Batman daemon (Batmand) is the implementation of Batman algorithm used by the MP. Batmand is a minimalistic routing protocol which performs well in laboratory experiments. The question raised is whether adding more service specific routing metrics improve the quality of service (QoS) observed in Batmand network in practice. The research investigates delay, packet loss, throughput and jitter as performance parameters (metrics) that may serve as options to improve the simplistic Batman algorithms route selection process. These metrics are essential for QoS in voice- and data-sensitive networks. Specific focus was given to delay and it is the metric added to Batmand. In addition the research examines how well the different applications such as voice and data are supported on the Batmand network under different routing scenarios. The research approach adopted in this dissertation was experimental and an indoor testbed was created to replicate the basic scenarios encountered in the rural environment. The essential characteristics found in the Mdumbi region of the Eastern Cape, South Africa, were taken as a case study in this dissertation. The testbed was used to compare the original Batman algorithm implemented as Batmand, referred to here as O-Batmand, routing protocol and the resultant Batmand version obtained from the addition of the delay-routing metric called modified Batmand (M-Batmand). The research produced a number of findings. As the number of hops increased the per-formance of the network decreased for both protocols. O-Batmand is well suited for the task of routing packets inside a wireless network. It is designed and works for voice packets and supports data services. This is also true for the M-Batmand implementation. M-Batmand was developed as an improvement to the O-Batmand implementation at the cost of increased complexity, experienced by the protocol through modifications of its route selection process. The modification involved adding network delay values to its route selection process. This addition resulted in a protocol that is delay sensitive; however, the overall performance gains were inexistent. The main conclusions drawn from this study are that O-Batmand cannot be modified to include additional metrics and be expected to improve its performance. Second conclusion is that M-Batmand did not improve the overall performance of the O-Batmand protocol. The addition of the delay metric actually hindered O-Batmand's performance to the extent that no overall performance gains were realised. Sources of performance degradations are: increased overhead, from added delay data, in the network control packets called originator messages (OGMs). M-Batmand performs calculation which O-Batmand did not increasing CPU cycle needs. Lastly upon further internal protocol investigation it is seen that the rate of route delay data updates is slower than the original metric used by the protocol. This creates route fluctuations as route selection process will change when the updated delay values are added and change again when there are not as the network obtains the updated delay data. Both protocols support voice and data, however, the results show that the quality of the network deteriorates in the testbed with increasing hops. This affects voice more so then it does data as routes become more unstable with each increasing hop. Further Batmand is best at supporting voice and data as it outperforms M-Batmand in the laboratory experiments conducted. This dissertation argues that while there may exist one or a combination of metrics amongst the researched list (delay, packet loss, throughput and jitter) that may actually improve the performance of the protocol, it is extremely hard to realize such gains in practice

    Experimental analysis and proof-of-concept of distributed mechanisms for local area wireless networks

    Get PDF

    A Radio Link Quality Model and Simulation Framework for Improving the Design of Embedded Wireless Systems

    Get PDF
    Despite the increasing application of embedded wireless systems, developers face numerous challenges during the design phase of the application life cycle. One of the critical challenges is ensuring performance reliability with respect to radio link quality. Specifically, embedded links experience exaggerated link quality variation, which results in undesirable wireless performance characteristics. Unfortunately, the resulting post-deployment behaviors often necessitate network redeployment. Another challenge is recovering from faults that commonly occur in embedded wireless systems, including node failure and state corruption. Self-stabilizing algorithms can provide recovery in the presence of such faults. These algorithms guarantee the eventual satisfaction of a given state legitimacy predicate regardless of the initial state of the network. Their practical behavior is often different from theoretical analyses. Unfortunately, there is little tool support for facilitating the experimental analysis of self-stabilizing systems. We present two contributions to support the design phase of embedded wireless system development. First, we provide two empirical models that predict radio-link quality within specific deployment environments. These models predict link performance as a function of inter-node distance and radio power level. The models are culled from extensive experimentation in open grass field and dense forest environments using all radio power levels and covering up to the maximum distances reachable by the radio. Second, we provide a simulation framework for simulating self-stabilizing algorithms. The framework provides three feature extensions: (i) fault injection to study algorithm behavior under various fault scenarios, (ii) automated detection of non-stabilizing behavior; and (iii) integration of the link quality models described above. Our contributions aim at avoiding problems that could result in the need for network redeployment

    Routing in multi-hop Ad Hoc networks: an Experimental Approach

    Get PDF
    In this thesis we investigate the efficiency of routing protocols for Mobile Ad Hoc networks (MANETs) by adopting an experimental approach. MANET routing protocols have been mainly evaluated through simulations which often introduce simplifying assumptions (e.g., radio propagation model) and mask important real characteristics. To avoid these modeling approximations, it is necessary to complement simulation with experiments on real MANETs. This work provides a contribution in this direction reporting our experiences learned by these real measurements. By setting up MANET prototypes, firstly we investigate IEEE 802.11 behavior in single­hop MANETs, secondly we focus on an innovative analysis of routing protocols in multi­hop MANETs by varying scenarios. To the best of our knowledge, our medium­scale scenario composed of 23 nodes represents one of the largest MANET testbed. Our experimental results highlight that, in contrast with MANET community, by using proactive routing protocols the overall system gains in scalability, performance and efficiency. These results encourage us identifying in this last class Hazy Sighted Link State (HSLS) as a more suitable protocol. A further contribution of this thesis is hence to design, develop and test an enhanced version of HSLS, strengthened with a mechanism to guarantee the reliability of LSU packets without additional control overhead, and a module to support middleware-network interactions as proposed by the MobileMAN project (EUIST-FP5-FET-Open-IST-2001-38113)
    corecore