35 research outputs found

    Designing new network adaptation and ATM adaptation layers for interactive multimedia applications

    Get PDF
    Multimedia services, audiovisual applications composed of a combination of discrete and continuous data streams, will be a major part of the traffic flowing in the next generation of high speed networks. The cornerstones for multimedia are Asynchronous Transfer Mode (ATM) foreseen as the technology for the future Broadband Integrated Services Digital Network (B-ISDN) and audio and video compression algorithms such as MPEG-2 that reduce applications bandwidth requirements. Powerful desktop computers available today can integrate seamlessly the network access and the applications and thus bring the new multimedia services to home and business users. Among these services, those based on multipoint capabilities are expected to play a major role.    Interactive multimedia applications unlike traditional data transfer applications have stringent simultaneous requirements in terms of loss and delay jitter due to the nature of audiovisual information. In addition, such stream-based applications deliver data at a variable rate, in particular if a constant quality is required.    ATM, is able to integrate traffic of different nature within a single network creating interactions of different types that translate into delay jitter and loss. Traditional protocol layers do not have the appropriate mechanisms to provide the required network quality of service (QoS) for such interactive variable bit rate (VBR) multimedia multipoint applications. This lack of functionalities calls for the design of protocol layers with the appropriate functions to handle the stringent requirements of multimedia.    This thesis contributes to the solution of this problem by proposing new Network Adaptation and ATM Adaptation Layers for interactive VBR multimedia multipoint services.    The foundations to build these new multimedia protocol layers are twofold; the requirements of real-time multimedia applications and the nature of compressed audiovisual data.    On this basis, we present a set of design principles we consider as mandatory for a generic Multimedia AAL capable of handling interactive VBR multimedia applications in point-to-point as well as multicast environments. These design principles are then used as a foundation to derive a first set of functions for the MAAL, namely; cell loss detection via sequence numbering, packet delineation, dummy cell insertion and cell loss correction via RSE FEC techniques.    The proposed functions, partly based on some theoretical studies, are implemented and evaluated in a simulated environment. Performances are evaluated from the network point of view using classic metrics such as cell and packet loss. We also study the behavior of the cell loss process in order to evaluate the efficiency to be expected from the proposed cell loss correction method. We also discuss the difficulties to map network QoS parameters to user QoS parameters for multimedia applications and especially for video information. In order to present a complete performance evaluation that is also meaningful to the end-user, we make use of the MPQM metric to map the obtained network performance results to a user level. We evaluate the impact that cell loss has onto video and also the improvements achieved with the MAAL.    All performance results are compared to an equivalent implementation based on AAL5, as specified by the current ITU-T and ATM Forum standards.    An AAL has to be by definition generic. But to fully exploit the functionalities of the AAL layer, it is necessary to have a protocol layer that will efficiently interface the network and the applications. This role is devoted to the Network Adaptation Layer.    The network adaptation layer (NAL) we propose, aims at efficiently interface the applications to the underlying network to achieve a reliable but low overhead transmission of video streams. Since this requires an a priori knowledge of the information structure to be transmitted, we propose the NAL to be codec specific.    The NAL targets interactive multimedia applications. These applications share a set of common requirements independent of the encoding scheme used. This calls for the definition of a set of design principles that should be shared by any NAL even if the implementation of the functions themselves is codec specific. On the basis of the design principles, we derive the common functions that NALs have to perform which are mainly two; the segmentation and reassembly of data packets and the selective data protection.    On this basis, we develop an MPEG-2 specific NAL. It provides a perceptual syntactic information protection, the PSIP, which results in an intelligent and minimum overhead protection of video information. The PSIP takes advantage of the hierarchical organization of the compressed video data, common to the majority of the compression algorithms, to perform a selective data protection based on the perceptual relevance of the syntactic information.    The transmission over the combined NAL-MAAL layers shows significant improvement in terms of CLR and perceptual quality compared to equivalent transmissions over AAL5 with the same overhead.    The usage of the MPQM as a performance metric, which is one of the main contributions of this thesis, leads to a very interesting observation. The experimental results show that for unexpectedly high CLRs, the average perceptual quality remains close to the original value. The economical potential of such an observation is very important. Given that the data flows are VBR, it is possible to improve network utilization by means of statistical multiplexing. It is therefore possible to reduce the cost per communication by increasing the number of connections with a minimal loss in quality.    This conclusion could not have been derived without the combined usage of perceptual and network QoS metrics, which have been able to unveil the economic potential of perceptually protected streams.    The proposed concepts are finally tested in a real environment where a proof-of-concept implementation of the MAAL has shown a behavior close to the simulated results therefore validating the proposed multimedia protocol layers

    Methods of Congestion Control for Adaptive Continuous Media

    Get PDF
    Since the first exchange of data between machines in different locations in early 1960s, computer networks have grown exponentially with millions of people now using the Internet. With this, there has also been a rapid increase in different kinds of services offered over the World Wide Web from simple e-mails to streaming video. It is generally accepted that the commonly used protocol suite TCP/IP alone is not adequate for a number of modern applications with high bandwidth and minimal delay requirements. Many technologies are emerging such as IPv6, Diffserv, Intserv etc, which aim to replace the onesize-fits-all approach of the current lPv4. There is a consensus that the networks will have to be capable of multi-service and will have to isolate different classes of traffic through bandwidth partitioning such that, for example, low priority best-effort traffic does not cause delay for high priority video traffic. However, this research identifies that even within a class there may be delays or losses due to congestion and the problem will require different solutions in different classes. The focus of this research is on the requirements of the adaptive continuous media class. These are traffic flows that require a good Quality of Service but are also able to adapt to the network conditions by accepting some degradation in quality. It is potentially the most flexible traffic class and therefore, one of the most useful types for an increasing number of applications. This thesis discusses the QoS requirements of adaptive continuous media and identifies an ideal feedback based control system that would be suitable for this class. A number of current methods of congestion control have been investigated and two methods that have been shown to be successful with data traffic have been evaluated to ascertain if they could be adapted for adaptive continuous media. A novel method of control based on percentile monitoring of the queue occupancy is then proposed and developed. Simulation results demonstrate that the percentile monitoring based method is more appropriate to this type of flow. The problem of congestion control at aggregating nodes of the network hierarchy, where thousands of adaptive flows may be aggregated to a single flow, is then considered. A unique method of pricing mean and variance is developed such that each individual flow is charged fairly for its contribution to the congestion

    Application of learning algorithms to traffic management in integrated services networks.

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN027131 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Renegotiable VBR service

    Get PDF
    In this work we address the problem of supporting the QoS requirements for applications while efficiently allocating the network resources. We analyse this problem at the source node where the traffic profile is negotiated with the network and the traffic is shaped according to the contract. We advocate VBR renegotiation as an efficient mechanism to accommodate traffic fluctuations over the burst time-scale. This is in line with the Integrated Service of the IETF with the Resource reSerVation Protocol (RSVP), where the negotiated contract may be modified periodically. In this thesis, we analyse the fundamental elements needed for solving the VBR renegotiation. A source periodically estimates the needs based on: (1) its future traffic, (2) cost objective, (3) information from the past. The issues of this estimation are twofold: future traffic prediction given a prediction, the optimal change. In the case of a CBR specification the optimisation problem is trivial. But with a VBR specification this problem is complex because of the multidimensionality of the VBR traffic descriptor and the non zero condition of the system at the times where the parameter set is changed. We, therefore, focus on the problem of finding the optimal change for sources with pre-recorded or classified traffic. The prediction of the future traffic is out of the scope of this thesis. Traditional existing models are not suitable for modelling this dynamic situation because they do not take into account the non-zero conditions at the transient moments. To address the shortfalls of the traditional approaches, a new class of shapers, the time varying leaky bucket shaper class, has been introduced and characterised by network calculus. To our knowledge, this is the first model that takes into account non-zero conditions at the transient time. This innovative result forms the basis of Renegotiable VBR Service (RVBR). The application of our RVBR mathematical model to the initial problem of supporting the applications' QoS requirements while efficiently allocating the network resources results in simple, efficient algorithms. Through simulation, we first compare RVBR service versus VBR service and versus renegotiable CBR service. We show that RVBR service provides significant advantages in terms of resource costs and resource utilisation. Then, we illustrate that when the service assumes zero conditions at the transient time, the source could potentially experience losses in the case of policing because of the mismatch between the assumed bucket and buffer level and the policed bucket and buffer level. As an example of RVBR service usage, we describe the simulation of RVBR service in a scenario where a sender transmits a MPEG2 video over a network using RSVP reservation protocol with Controlled-Load service. We also describe the implementation design of a Video on Demand application, which is the first example of an RVBR-enabled application. The simulation and experimentation results lead us to believe that RVBR service provides an adequate service (in terms of QoS guaranteed and of efficient resource allocation) to sources with pre-recorded or classified traffic

    Robust mode selection for block-motion-compensated video encoding

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.Includes bibliographical references (p. 129-132).by Raynard O. Hinds.Ph.D

    Journal of Telecommunications and Information Technology, 2002, nr 2

    Get PDF
    kwartalni

    A IEEE 802.11e HCCA Scheduler with a Reclaiming Mechanism for Multimedia Applications

    Get PDF
    The QoS offered by the IEEE 802.11e reference scheduler is satisfactory in the case of Constant Bit Rate traffic streams, but not yet in the case of Variable Bit Rate traffic streams, whose variations stress its scheduling behavior. Despite the numerous proposed alternative schedulers with QoS, multimedia applications are looking for refined methods suitable to ensure service differentiation and dynamic update of protocol parameters. In this paper a scheduling algorithm,Unused Time Shifting Scheduler(UTSS), is deeply analyzed. It is designed to cooperate with a HCCA centralized real-time scheduler through the integration of a bandwidth reclaiming scheme, suitable to recover nonexhausted transmission time and assign that to the next polled stations. UTSS dynamically computes with anO(1)complexity transmission time providing an instantaneous resource overprovisioning. The theoretical analysis and the simulation results highlight that this injection of resources does not affect the admission control nor the centralized scheduler but is suitable to improve the performance of the centralized scheduler in terms of mean access delay, transmission queues length, bursts of traffic management, and packets drop rate. These positive effects are more relevant for highly variable bit rate traffic

    Satellite Networks: Architectures, Applications, and Technologies

    Get PDF
    Since global satellite networks are moving to the forefront in enhancing the national and global information infrastructures due to communication satellites' unique networking characteristics, a workshop was organized to assess the progress made to date and chart the future. This workshop provided the forum to assess the current state-of-the-art, identify key issues, and highlight the emerging trends in the next-generation architectures, data protocol development, communication interoperability, and applications. Presentations on overview, state-of-the-art in research, development, deployment and applications and future trends on satellite networks are assembled

    Reactive traffic control mechanisms for communication networks with self-similar bandwidth demands

    Get PDF
    Communication network architectures are in the process of being redesigned so that many different services are integrated within the same network. Due to this integration, traffic management algorithms need to balance the requirements of the traffic which the algorithms are directly controlling with Quality of Service (QoS) requirements of other classes of traffic which will be encountered in the network. Of particular interest is one class of traffic, termed elastic traffic, that responds to dynamic feedback from the network regarding the amount of available resources within the network. Examples of this type of traffic include the Available Bit Rate (ABR) service in Asynchronous Transfer Mode (ATM) networks and connections using Transmission Control Protocol (TCP) in the Internet. Both examples aim to utilise available bandwidth within a network. Reactive traffic management, like that which occurs in the ABR service and TCP, depends explicitly on the dynamic bandwidth requirements of other traffic which is currently using the network. In particular, there is significant evidence that a wide range of network traffic, including Ethernet, World Wide Web, Varible Bit Rate video and signalling traffic, is self-similar. The term self-similar refers to the particular characteristic of network traffic to remain bursty over a wide range of time scales. A closely associated characteristic of self-similar traffic is its long-range dependence (LRD), which refers to the significant correlations that occur with the traffic. By utilising these correlations, greater predictability of network traffic can be achieved, and hence the performance of reactive traffic management algorithms can be enhanced. A predictive rate control algorithm, called PERC (Predictive Explicit Rate Control), is proposed in this thesis which is targeted to the ABR service in ATM networks. By incorporating the LRD stochastic structure of background traffic, measurements of the bandwidth requirements of background traffic, and the delay associated with a particular ABR connection, a predictive algorithm is defined which provides explicit rate information that is conveyed to ABR sources. An enhancement to PERC is also described. This algorithm, called PERC+, uses previous control information to correct prediction errors that occur for connections with larger round-trip delay. These algorithms have been extensively analysed with regards to their network performance, and simulation results show that queue lengths and cell loss rates are significantly reduced when these algorithms are deployed. An adaptive version of PERC has also been developed using real-time parameter estimates of self-similar traffic. This has excellent performance compared with standard ABR rate control algorithms such as ERICA. Since PERC and its enhancement PERC+ have explicitly utilised the index of self-similarity, known as the Hurst parameter, the sensitivity of these algorithms to this parameter can be determined analytically. Research work described in this thesis shows that the algorithms have an asymmetric sensitivity to the Hurst parameter, with significant sensitivity in the region where the parameter is underestimated as being close to 0.5. Simulation results reveal the same bias in the performance of the algorithm with regards to the Hurst parameter. In contrast, PERC is insensitive to estimates of the mean, using the sample mean estimator, and estimates of the traffic variance, which is due to the algorithm primarily utilising the correlation structure of the traffic to predict future bandwidth requirements. Sensitivity analysis falls into the area of investigative research, but it naturally leads to the area of robust control, where algorithms are designed so that uncertainty in traffic parameter estimation or modelling can be accommodated. An alternative robust design approach, to the standard maximum entropy approach, is proposed in this thesis that uses the maximum likelihood function to develop the predictive rate controller. The likelihood function defines the proximity of a specific traffic model to the traffic data, and hence gives a measure of the performance of a chosen model. Maximising the likelihood function leads to optimising robust performance, and it is shown, through simulations, that the system performance is close to the optimal performance as compared with maximising the spectral entropy. There is still debate regarding the influence of LRD on network performance. This thesis also considers the question of the influence of LRD on traffic predictability, and demonstrates that predictive rate control algorithms that only use short-term correlations have close performance to algorithms that utilise long-term correlations. It is noted that predictors based on LRD still out-perform ones which use short-term correlations, but that there is Potential simplification in the design of predictors, since traffic predictability can be achieved using short-term correlations. This thesis forms a substantial contribution to the understanding of control in the case where self-similar processes form part of the overall system. Rather than doggedly pursuing self-similar control, a broader view has been taken where the performance of algorithms have been considered from a number of perspectives. A number of different research avenues lead on from this work, and these are outlined
    corecore