1,404 research outputs found

    Semi-proximal Mirror-Prox for Nonsmooth Composite Minimization

    Get PDF
    We propose a new first-order optimisation algorithm to solve high-dimensional non-smooth composite minimisation problems. Typical examples of such problems have an objective that decomposes into a non-smooth empirical risk part and a non-smooth regularisation penalty. The proposed algorithm, called Semi-Proximal Mirror-Prox, leverages the Fenchel-type representation of one part of the objective while handling the other part of the objective via linear minimization over the domain. The algorithm stands in contrast with more classical proximal gradient algorithms with smoothing, which require the computation of proximal operators at each iteration and can therefore be impractical for high-dimensional problems. We establish the theoretical convergence rate of Semi-Proximal Mirror-Prox, which exhibits the optimal complexity bounds, i.e. O(1/ϵ2)O(1/\epsilon^2), for the number of calls to linear minimization oracle. We present promising experimental results showing the interest of the approach in comparison to competing methods

    The Forward-Backward-Forward Method from continuous and discrete perspective for pseudo-monotone variational inequalities in Hilbert spaces

    Full text link
    Tseng's forward-backward-forward algorithm is a valuable alternative for Korpelevich's extragradient method when solving variational inequalities over a convex and closed set governed by monotone and Lipschitz continuous operators, as it requires in every step only one projection operation. However, it is well-known that Korpelevich's method converges and can therefore be used also for solving variational inequalities governed by pseudo-monotone and Lipschitz continuous operators. In this paper, we first associate to a pseudo-monotone variational inequality a forward-backward-forward dynamical system and carry out an asymptotic analysis for the generated trajectories. The explicit time discretization of this system results into Tseng's forward-backward-forward algorithm with relaxation parameters, which we prove to converge also when it is applied to pseudo-monotone variational inequalities. In addition, we show that linear convergence is guaranteed under strong pseudo-monotonicity. Numerical experiments are carried out for pseudo-monotone variational inequalities over polyhedral sets and fractional programming problems

    Solving Variational Inequalities with Monotone Operators on Domains Given by Linear Minimization Oracles

    Full text link
    The standard algorithms for solving large-scale convex-concave saddle point problems, or, more generally, variational inequalities with monotone operators, are proximal type algorithms which at every iteration need to compute a prox-mapping, that is, to minimize over problem's domain XX the sum of a linear form and the specific convex distance-generating function underlying the algorithms in question. Relative computational simplicity of prox-mappings, which is the standard requirement when implementing proximal algorithms, clearly implies the possibility to equip XX with a relatively computationally cheap Linear Minimization Oracle (LMO) able to minimize over XX linear forms. There are, however, important situations where a cheap LMO indeed is available, but where no proximal setup with easy-to-compute prox-mappings is known. This fact motivates our goal in this paper, which is to develop techniques for solving variational inequalities with monotone operators on domains given by Linear Minimization Oracles. The techniques we develope can be viewed as a substantial extension of the proposed in [5] method of nonsmooth convex minimization over an LMO-represented domain

    Inexact Model: A Framework for Optimization and Variational Inequalities

    Get PDF
    In this paper we propose a general algorithmic framework for first-order methods in optimization in a broad sense, including minimization problems, saddle-point problems and variational inequalities. This framework allows to obtain many known methods as a special case, the list including accelerated gradient method, composite optimization methods, level-set methods, proximal methods. The idea of the framework is based on constructing an inexact model of the main problem component, i.e. objective function in optimization or operator in variational inequalities. Besides reproducing known results, our framework allows to construct new methods, which we illustrate by constructing a universal method for variational inequalities with composite structure. This method works for smooth and non-smooth problems with optimal complexity without a priori knowledge of the problem smoothness. We also generalize our framework for strongly convex objectives and strongly monotone variational inequalities.Comment: 41 page

    Generalized Forward-Backward Splitting

    Full text link
    This paper introduces the generalized forward-backward splitting algorithm for minimizing convex functions of the form F+∑i=1nGiF + \sum_{i=1}^n G_i, where FF has a Lipschitz-continuous gradient and the GiG_i's are simple in the sense that their Moreau proximity operators are easy to compute. While the forward-backward algorithm cannot deal with more than n=1n = 1 non-smooth function, our method generalizes it to the case of arbitrary nn. Our method makes an explicit use of the regularity of FF in the forward step, and the proximity operators of the GiG_i's are applied in parallel in the backward step. This allows the generalized forward backward to efficiently address an important class of convex problems. We prove its convergence in infinite dimension, and its robustness to errors on the computation of the proximity operators and of the gradient of FF. Examples on inverse problems in imaging demonstrate the advantage of the proposed methods in comparison to other splitting algorithms.Comment: 24 pages, 4 figure
    • …
    corecore