831 research outputs found

    Efficient pricing of discrete arithmetic Asian options under mean reversion and jumps based on Fourier-cosine expansions

    Get PDF
    We propose an efficient pricing method for arithmetic Asian options based on Fourier-cosine expansions. In particular, we allow for mean reversion and jumps in the underlying price dynamics. There is an extensive body of empirical evidence in the current literature that points to the existence and prominence of such anomalies in the prices of certain asset classes, such as commodities. Our efficient pricing method is derived for the discretely monitored versions of the European-style arithmetic Asian options. The analytical solutions obtained from our Fourier-cosine expansions are compared to the benchmark fast Fourier transform based pricing for the examination of its accuracy and computational efficienc

    Lower Precision calculation for option pricing

    Get PDF
    The problem of options pricing is one of the most critical issues and fundamental building blocks in mathematical finance. The research includes deployment of lower precision type in two options pricing algorithms: Black-Scholes and Monte Carlo simulation. We make an assumption that the shorter the number used for calculations is (in bits), the more operations we are able to perform in the same time. The results are examined by a comparison to the outputs of single and double precision types. The major goal of the study is to indicate whether the lower precision types can be used in financial mathematics. The findings indicate that Black-Scholes provided more precise outputs than the basic implementation of Monte Carlo simulation. Modification of the Monte Carlo algorithm is also proposed. The research shows the limitations and opportunities of the lower precision type usage. In order to benefit from the application in terms of the time of calculation improved algorithms can be implemented on GPU or FPGA. We conclude that under particular restrictions the lower precision calculation can be used in mathematical finance.

    The Pricing of Asian Options in Uncertain Volatility Model

    Get PDF
    This paper studies the pricing of Asian options when the volatility of the underlying asset is uncertain. We use the nonlinear Feynman-Kac formula in the G-expectation theory to get the two-dimensional nonlinear PDEs. For the arithmetic average fixed strike Asian options, the nonlinear PDEs can be transferred to linear PDEs. For the arithmetic average floating strike Asian options, we use a dimension reduction technique to transfer the two-dimensional nonlinear PDEs to one-dimensional nonlinear PDEs. Then we introduce the applicable numerical computation methods for these two classes of PDEs and analyze the performance of the numerical algorithms

    Efficient Procedure for Valuing American Lookback Put Options

    Get PDF
    Lookback option is a well-known path-dependent option where its payoff depends on the historical extremum prices. The thesis focuses on the binomial pricing of the American floating strike lookback put options with payoff at time tt (if exercise) characterized by maxk=0,,tSkSt, \max_{k=0, \ldots, t} S_k - S_t, where StS_t denotes the price of the underlying stock at time tt. Build upon the idea of \hyperlink{RBCV}{Reiner Babbs Cheuk and Vorst} (RBCV, 1992) who proposed a transformed binomial lattice model for efficient pricing of this class of option, this thesis extends and enhances their binomial recursive algorithm by exploiting the additional combinatorial properties of the lattice structure. The proposed algorithm is not only computational efficient but it also significantly reduces the memory constraint. As a result, the proposed algorithm is more than 1000 times faster than the original RBCV algorithm and it can compute a binomial lattice with one million time steps in less than two seconds. This algorithm enables us to extrapolate the limiting (American) option value up to 4 or 5 decimal accuracy in real time

    Black-Scholes formulae for Asian options in local volatility models

    Get PDF
    We develop approximate formulae expressed in terms of elementary functions for the density, the price and the Greeks of path dependent options of Asian style, in a general local volatility model. An algorithm for computing higher order approximations is provided. The proof is based on a heat kernel expansion method in the framework of hypoelliptic, not uniformly parabolic, partial differential equations
    corecore