2,286 research outputs found

    Pickup usability dominates: a brief history of mobile text entry research and adoption

    Get PDF
    Text entry on mobile devices (e.g. phones and PDAs) has been a research challenge since devices shrank below laptop size: mobile devices are simply too small to have a traditional full-size keyboard. There has been a profusion of research into text entry techniques for smaller keyboards and touch screens: some of which have become mainstream, while others have not lived up to early expectations. As the mobile phone industry moves to mainstream touch screen interaction we will review the range of input techniques for mobiles, together with evaluations that have taken place to assess their validity: from theoretical modelling through to formal usability experiments. We also report initial results on iPhone text entry speed

    Keystroke dynamics in the pre-touchscreen era

    Get PDF
    Biometric authentication seeks to measure an individual’s unique physiological attributes for the purpose of identity verification. Conventionally, this task has been realized via analyses of fingerprints or signature iris patterns. However, whilst such methods effectively offer a superior security protocol compared with password-based approaches for example, their substantial infrastructure costs, and intrusive nature, make them undesirable and indeed impractical for many scenarios. An alternative approach seeks to develop similarly robust screening protocols through analysis of typing patterns, formally known as keystroke dynamics. Here, keystroke analysis methodologies can utilize multiple variables, and a range of mathematical techniques, in order to extract individuals’ typing signatures. Such variables may include measurement of the period between key presses, and/or releases, or even key-strike pressures. Statistical methods, neural networks, and fuzzy logic have often formed the basis for quantitative analysis on the data gathered, typically from conventional computer keyboards. Extension to more recent technologies such as numerical keypads and touch-screen devices is in its infancy, but obviously important as such devices grow in popularity. Here, we review the state of knowledge pertaining to authentication via conventional keyboards with a view toward indicating how this platform of knowledge can be exploited and extended into the newly emergent type-based technological contexts

    Designing touch screen user interfaces for future flight deck operations

    Get PDF
    Many interactional issues with Flight Management Systems (FMS) in modern flight decks have been reported. Avionics designers are seeking for ways to reduce cognitive load of pilots with the aim to reduce the potential for human error. Academic research showed that touch screen interfaces reduce cognitive effort and provide an intuitive way of interaction. A new way of interaction to manipulate radio frequencies of avionics systems is presented in this paper. A usability experiment simulating departures and approaches to airports was used to evaluate the interface and compare it with the current system (FMS). In addition, interviews with pilots were conducted to find out their personal impressions and to reveal problem areas of the interface. Analyses of task completion time and error rates showed that the touch interface is significantly faster and less prone to user input errors than the conventional input method (via physical or virtual keypad). Potential problem areas were identified and an improved interface is suggested

    The Tongue Enables Computer and Wheelchair Control for People with Spinal Cord Injury

    Get PDF
    The Tongue Drive System (TDS) is a wireless and wearable assistive technology, designed to allow individuals with severe motor impairments such as tetraplegia to access their environment using voluntary tongue motion. Previous TDS trials used a magnetic tracer temporarily attached to the top surface of the tongue with tissue adhesive. We investigated TDS efficacy for controlling a computer and driving a powered wheelchair in two groups of able-bodied subjects and a group of volunteers with spinal cord injury (SCI) at C6 or above. All participants received a magnetic tongue barbell and used the TDS for five to six consecutive sessions. The performance of the group was compared for TDS versus keypad and TDS versus a sip-and-puff device (SnP) using accepted measures of speed and accuracy. All performance measures improved over the course of the trial. The gap between keypad and TDS performance narrowed for able-bodied subjects. Despite participants with SCI already having familiarity with the SnP, their performance measures were up to three times better with the TDS than with the SnP and continued to improve. TDS flexibility and the inherent characteristics of the human tongue enabled individuals with high-level motor impairments to access computers and drive wheelchairs at speeds that were faster than traditional assistive technologies but with comparable accuracy

    Onsetsu hyoki no kyotsusei ni motozuita Ajia moji nyuryoku intafesu ni kansuru kenkyu

    Get PDF
    制度:新 ; 報告番号:甲3450号 ; 学位の種類:博士(国際情報通信学) ; 授与年月日:2011/10/26 ; 早大学位記番号:新577

    An investigation into gaze-based interaction techniques for people with motor impairments

    Get PDF
    The use of eye movements to interact with computers offers opportunities for people with impaired motor ability to overcome the difficulties they often face using hand-held input devices. Computer games have become a major form of entertainment, and also provide opportunities for social interaction in multi-player environments. Games are also being used increasingly in education to motivate and engage young people. It is important that young people with motor impairments are able to benefit from, and enjoy, them. This thesis describes a program of research conducted over a 20-year period starting in the early 1990's that has investigated interaction techniques based on gaze position intended for use by people with motor impairments. The work investigates how to make standard software applications accessible by gaze, so that no particular modification to the application is needed. The work divides into 3 phases. In the first phase, ways of using gaze to interact with the graphical user interfaces of office applications were investigated, designed around the limitations of gaze interaction. Of these, overcoming the inherent inaccuracies of pointing by gaze at on-screen targets was particularly important. In the second phase, the focus shifted from office applications towards immersive games and on-line virtual worlds. Different means of using gaze position and patterns of eye movements, or gaze gestures, to issue commands were studied. Most of the testing and evaluation studies in this, like the first, used participants without motor-impairments. The third phase of the work then studied the applicability of the research findings thus far to groups of people with motor impairments, and in particular,the means of adapting the interaction techniques to individual abilities. In summary, the research has shown that collections of specialised gaze-based interaction techniques can be built as an effective means of completing the tasks in specific types of games and how these can be adapted to the differing abilities of individuals with motor impairments

    Development of a Low-Cost Robotics Platform that Facilitates the Enhancement of Microcomputer Structures and Interfacing Learning Objectives

    Get PDF
    Robotics has become a common educational tool to teach basic concepts in mathematics, science, engineering, technology, world affairs, and much more. Programs such as For Inspiration and Recognition of Science and Technology (FIRST) robotics are demonstrating that the recipe for student inspiration and learning involves robotics, problem solving, teamwork, and friendly competition. The successes of FIRST robotics programs and results from universities that have integrated robotics platforms into their curriculum provide evidence that infusing robotics platforms and curriculum into engineering departments better their capabilities and increase attractiveness to current and future students. This effort details the design and development of a low-cost robotics platform and seamless set of supporting curriculum. The platform and seamless curriculum set is implemented in the West Virginia University\u27s Lane Department of Computer Science and Electrical Engineering (LCSEE) microcomputer structures and interfacing laboratory, an undergraduate computer engineering course. The results provide detailed information on the robotics platform as well as detailed information on the seamless set of modules that make up the curriculum. The results demonstrate that a subset of students become significantly more motivated and are more willing to work additional hours to improve upon their design as compared to traditional laboratory sessions. These results are significant and demonstrate that robotics and seamless curriculum sets provide a solid platform to introduce computer engineering concepts that inspire and motivate students
    corecore