2,132 research outputs found

    Multi-kw dc power distribution system study program

    Get PDF
    The first phase of the Multi-kw dc Power Distribution Technology Program is reported and involves the test and evaluation of a technology breadboard in a specifically designed test facility according to design concepts developed in a previous study on space vehicle electrical power processing, distribution, and control. The static and dynamic performance, fault isolation, reliability, electromagnetic interference characterisitics, and operability factors of high distribution systems were studied in order to gain a technology base for the use of high voltage dc systems in future aerospace vehicles. Detailed technical descriptions are presented and include data for the following: (1) dynamic interactions due to operation of solid state and electromechanical switchgear; (2) multiplexed and computer controlled supervision and checkout methods; (3) pulse width modulator design; and (4) cable design factors

    Electromagnetic Compatibility Considerations for International Space Station Payload Developers

    Get PDF
    The International Space Station (ISS) is a laboratory for scientific research, innovative technology development, and global education. The ISS provides a number of facilities and platforms for payload developers and investigators to conduct biological, microgravity, and Earth and space observation science, as well as for performing technology development. Due to the unique nature of the ISS vehicle and its electrical power and data systems, achieving electromagnetic compatibility (EMC) with the vehicle requires special considerations by the payload developer. The ISS electromagnetic interference (EMI) requirements and test methods are based on MIL-STD-461, Electromagnetic Emissions and Susceptibility Requirements for the Control of Electromagnetic Interference, Revision C, and MIL-STD-462, Electromagnetic Interference Characteristics, Measurement of, respectively. The low source impedance of the test setup requires special considerations when designing or selecting EMI power filters and switched mode power supplies. Many filters, suited for later revisions of MIL-STD-461, will result in non-compliant designs. ISS electrical power system power quality requirements, imposed to protect the stability of the system, can also affect EMI filter design. The selection and use of commercial-off-the-shelf (COTS) equipment for ISS applications requires special considerations to meet both EMC and crew safety requirements. Furthermore, the ISS environment can provide unique immunity challenges; if the payload developer ignores these challenges, the result is a possible loss of science or impact to technology demonstration. The ISS provides a unique opportunity for the science and technology development community. However, in order to be successful, the payload developer must incorporate special EMC considerations, many of which will be presented

    Applications of Power Electronics:Volume 2

    Get PDF

    Modeling and identification of power electronic converters

    Get PDF
    Nowadays, many industries are moving towards more electrical systems and components. This is done with the purpose of enhancing the efficiency of their systems while being environmentally friendlier and sustainable. Therefore, the development of power electronic systems is one of the most important points of this transition. Many manufacturers have improved their equipment and processes in order to satisfy the new necessities of the industries (aircraft, automotive, aerospace, telecommunication, etc.). For the particular case of the More Electric Aircraft (MEA), there are several power converters, inverters and filters that are usually acquired from different manufacturers. These are switched mode power converters that feed multiple loads, being a critical element in the transmission systems. In some cases, these manufacturers do not provide the sufficient information regarding the functionality of the devices such as DC/DC power converters, rectifiers, inverters or filters. Consequently, there is the need to model and identify the performance of these components to allow the aforementioned industries to develop models for the design stage, for predictive maintenance, for detecting possible failures modes, and to have a better control over the electrical system. Thus, the main objective of this thesis is to develop models that are able to describe the behavior of power electronic converters, whose parameters and/or topology are unknown. The algorithms must be replicable and they should work in other types of converters that are used in the power electronics field. The thesis is divided in two main cores, which are the parameter identification for white-box models and the black-box modeling of power electronics devices. The proposed approaches are based on optimization algorithms and deep learning techniques that use non-intrusive measurements to obtain a set of parameters or generate a model, respectively. In both cases, the algorithms are trained and tested using real data gathered from converters used in aircrafts and electric vehicles. This thesis also presents how the proposed methodologies can be applied to more complex power systems and for prognostics tasks. Concluding, this thesis aims to provide algorithms that allow industries to obtain realistic and accurate models of the components that they are using in their electrical systems.En la actualidad, el uso de sistemas y componentes eléctricos complejos se extiende a múltiples sectores industriales. Esto se hace con el propósito de mejorar su eficiencia y, en consecuencia, ser más sostenibles y amigables con el medio ambiente. Por tanto, el desarrollo de sistemas electrónicos de potencia es uno de los puntos más importantes de esta transición. Muchos fabricantes han mejorado sus equipos y procesos para satisfacer las nuevas necesidades de las industrias (aeronáutica, automotriz, aeroespacial, telecomunicaciones, etc.). Para el caso particular de los aviones más eléctricos (MEA, por sus siglas en inglés), existen varios convertidores de potencia, inversores y filtros que suelen adquirirse a diferentes fabricantes. Se trata de convertidores de potencia de modo conmutado que alimentan múltiples cargas, siendo un elemento crítico en los sistemas de transmisión. En algunos casos, estos fabricantes no proporcionan la información suficiente sobre la funcionalidad de los dispositivos como convertidores de potencia DC-DC, rectificadores, inversores o filtros. En consecuencia, existe la necesidad de modelar e identificar el desempeño de estos componentes para permitir que las industrias mencionadas desarrollan modelos para la etapa de diseño, para el mantenimiento predictivo, para la detección de posibles modos de fallas y para tener un mejor control del sistema eléctrico. Así, el principal objetivo de esta tesis es desarrollar modelos que sean capaces de describir el comportamiento de un convertidor de potencia, cuyos parámetros y/o topología se desconocen. Los algoritmos deben ser replicables y deben funcionar en otro tipo de convertidores que se utilizan en el campo de la electrónica de potencia. La tesis se divide en dos núcleos principales, que son la identificación de parámetros de los convertidores y el modelado de caja negra (black-box) de dispositivos electrónicos de potencia. Los enfoques propuestos se basan en algoritmos de optimización y técnicas de aprendizaje profundo que utilizan mediciones no intrusivas de las tensiones y corrientes de los convertidores para obtener un conjunto de parámetros o generar un modelo, respectivamente. En ambos casos, los algoritmos se entrenan y prueban utilizando datos reales recopilados de convertidores utilizados en aviones y vehículos eléctricos. Esta tesis también presenta cómo las metodologías propuestas se pueden aplicar a sistemas eléctricos más complejos y para tareas de diagnóstico. En conclusión, esta tesis tiene como objetivo proporcionar algoritmos que permitan a las industrias obtener modelos realistas y precisos de los componentes que están utilizando en sus sistemas eléctricos.Postprint (published version

    Electrical Optimization of a Plug-In Hybrid Electric Vehicle

    Get PDF
    Hybrid electric vehicles electrification and optimization is a prominent part of today’s automotive industry. GM and the Department of Energy challenge 16 universities across North America to redesign a Chevrolet Camaro into a hybrid electric vehicle. This thesis will address how Embry Riddle Aeronautical University’s EcoCAR team electrified and optimized the vehicle. The objective of the thesis is to optimize the electric portion of the vehicle, particularly the low voltage circuitry. Prior work is discussed in detail on the vehicle communication bus, building the power distribution unit and the approach the electrical team took when building the electric portion of the vehicle. Simulations were done based on manufacturer data and bench tests to create an ideal model. Data was collected from the vehicle and compared to the ideal model to determine errors in the electrical system. An emphasis was placed on critical and high power components to simplify the simulation model. The issues found were alleviated by conducting research, using research analysis, physically changing the system or by implementing control strategies. Most of the issues came from the power distribution unit and implementation techniques such as grounding. The MOSFETs within the power distribution unit was not fully turning on and off, and which was due to a slow RC time constant occurring on the gate of the transistors. By replacing the resistors, this issue was mitigated. Every problem found was properly mitigated to an acceptable industry or research standard

    Modeling and analyzing parasitic parameters in high frequency converters

    Get PDF
    This research focuses on electromagnetic interference (EMI) / electromagnetic compatibility (EMC) design and analysis in power electronics systems. To limit the EMI under the standards, different methods and strategies are investigated. Parasitic parameters of high frequency (HF) transformer are analyzed using a novel analytical method, finite element method (FEM), and experimental measurements for different structures and windings arrangements. Also, the magnetic field, electric field, electric displacement, and electric potential distribution are simulated and analyzed. Moreover, a high voltage system is considered and analyzed to improve the EMC. The EMI propagation paths are analyzed. The EMI noise level of the system is obtained and compared to the IEC61800-3 standard. To improve the EMC, the parasitic parameters of the transformer, as the main path of EMI circulation, are analyzed and optimized to block the propagation. Furthermore, the geometry structure of the HF transformer is optimized to lower the parasitics in the system. Three pareto-optimal techniques are investigated for the optimization. The models and results are verified by 3D-FEM and experimental results for several given scenarios. Furthermore, the EMC modeling and conducted EMI analysis are developed for a system including an AC-DC-DC power supply (rectifier and dual active bridge (DAB) converter). Moreover, the common mode (CM) EMI noise propagation through the system is discussed and the noise sources and effect of components on the noise are analyzed. Additionally, the CM impedance of different parts of the system and the noise levels are discussed. Finally, EMI attenuation techniques were applied to the system --Abstract, page iv

    State-variable modelling of CLL resonant converters

    Get PDF
    The paper presents the derivation and application of state-variable models to high-order topologies of resonant converters. In particular, a 3rd order CLL resonant circuit is considered with bridge rectification and both a capacitive output filter (voltage output), and an LC output filter (current output). The state-variable model accuracy is verified against component-based simulation packages (Spice) and practical measurements, and it is shown that the resulting models facilitate rapid analysis compared to their integration-based counterparts (Spice, Saber), without the loss of accuracy normally associated with fundamental mode approximation (FMA) techniques. Moreover, unlike FMA, the models correctly predict the resonant peaks associated with harmonic excitation of the tank resonance. Subsequently, it is shown that excitation of the resonant tank by odd harmonics of the input voltage can be utilised to provide overcurrent protection in the event of an output short-circuit. Further, through judicious control of operating frequency, it is shown that 'inductive' zero voltage switching (ZVS) can still be obtained, facilitating reductions in gate-drive switching losses, thereby improving efficiency and thermal management of the supply under fault conditions. Although the results are ultimately generic to other converter counterparts, measured results from two prototype 36 V input, 11-14.4V output, 3rd - order CLL converters are included to practically demonstrate the attributes of the proposed analysis and control schemes

    POWER QUALITY CONTROL AND COMMON-MODE NOISE MITIGATION FOR INVERTERS IN ELECTRIC VEHICLES

    Get PDF
    Inverters are widely utilized in electric vehicle (EV) applications as a major voltage/current source for onboard battery chargers (OBC) and motor drive systems. The inverter performance is critical to the efficiency of EV system energy conversion and electronics system electro-magnetic interference (EMI) design. However, for AC systems, the bandwidth requirement is usually low compared with DC systems, and the control impact on the inverter differential-mode (DM) and common-mode (CM) performance are not well investigated. With the wide-band gap (WBG) device era, the switching capability of power electronics devices drastically improved. The DM/CM impact that was brought by the WBG device-based inverter becomes more serious and has not been completely understood. This thesis provides an in-depth analysis of on-board inverter control strategies and the corresponding DM/CM impact on the EV system. The OBC inverter control under vehicle-to-load (V2L) mode will be documented first. A virtual resistance damping method minimizes the nonlinear load harmonics, and a neutral balancing method regulates the unbalanced load impact through the fourth leg. In the motor drive system, a generalized CM voltage analytical model and a current ripple prediction model are built for understanding the system CM and DM stress with respect to different modulation methods, covering both 2-level and 3-level topologies. A novel CM EMI damping modulation scheme is proposed for 6-phase inverter applications. The performance comparison between the proposed methods and the conventional solution is carried out. Each topic is supported by the corresponding hardware platform and experimental validation

    Wide Band Gap Devices and Their Application in Power Electronics

    Get PDF
    Power electronic systems have a great impact on modern society. Their applications target a more sustainable future by minimizing the negative impacts of industrialization on the environment, such as global warming effects and greenhouse gas emission. Power devices based on wide band gap (WBG) material have the potential to deliver a paradigm shift in regard to energy efficiency and working with respect to the devices based on mature silicon (Si). Gallium nitride (GaN) and silicon carbide (SiC) have been treated as one of the most promising WBG materials that allow the performance limits of matured Si switching devices to be significantly exceeded. WBG-based power devices enable fast switching with lower power losses at higher switching frequency and hence, allow the development of high power density and high efficiency power converters. This paper reviews popular SiC and GaN power devices, discusses the associated merits and challenges, and finally their applications in power electronics

    Design and Advanced Model Predictive Control of Wide Bandgap Based Power Converters

    Get PDF
    The field of power electronics (PE) is experiencing a revolution by harnessing the superior technical characteristics of wide-band gap (WBG) materials, namely Silicone Carbide (SiC) and Gallium Nitride (GaN). Semiconductor devices devised using WBG materials enable high temperature operation at reduced footprint, offer higher blocking voltages, and operate at much higher switching frequencies compared to conventional Silicon (Si) based counterpart. These characteristics are highly desirable as they allow converter designs for challenging applications such as more-electric-aircraft (MEA), electric vehicle (EV) power train, and the like. This dissertation presents designs of a WBG based power converters for a 1 MW, 1 MHz ultra-fast offboard EV charger, and 250 kW integrated modular motor drive (IMMD) for a MEA application. The goal of these designs is to demonstrate the superior power density and efficiency that are achievable by leveraging the power of SiC and GaN semiconductors. Ultra-fast EV charging is expected to alleviate the challenge of range anxiety , which is currently hindering the mass adoption of EVs in automotive market. The power converter design presented in the dissertation utilizes SiC MOSFETs embedded in a topology that is a modification of the conventional three-level (3L) active neutral-point clamped (ANPC) converter. A novel phase-shifted modulation scheme presented alongside the design allows converter operation at switching frequency of 1 MHz, thereby miniaturizing the grid-side filter to enhance the power density. IMMDs combine the power electronic drive and the electric machine into a single unit, and thus is an efficient solution to realize the electrification of aircraft. The IMMD design presented in the dissertation uses GaN devices embedded in a stacked modular full-bridge converter topology to individually drive each of the motor coils. Various issues and solutions, pertaining to paralleling of GaN devices to meet the high current requirements are also addressed in the thesis. Experimental prototypes of the SiC ultra-fast EV charger and GaN IMMD were built, and the results confirm the efficacy of the proposed designs. Model predictive control (MPC) is a nonlinear control technique that has been widely investigated for various power electronic applications in the past decade. MPC exploits the discrete nature of power converters to make control decisions using a cost function. The controller offers various advantages over, e.g., linear PI controllers in terms of fast dynamic response, identical performance at a reduced switching frequency, and ease of applicability to MIMO applications. This dissertation also investigates MPC for key power electronic applications, such as, grid-tied VSC with an LCL filter and multilevel VSI with an LC filter. By implementing high performance MPC controllers on WBG based power converters, it is possible to formulate designs capable of fast dynamic tracking, high power operation at reduced THD, and increased power density
    • …
    corecore