129 research outputs found

    Comparison of hyperspectral and multi-spectral imagery to building a spectral library and land cover classification performanc

    Get PDF
    The main aim of this research work is to compare k-nearest neighbor algorithm (KNN) supervised classification with migrating means clustering unsupervised classification (MMC) method on the performance of hyperspectral and multispectral data for spectral land cover classes and develop their spectral library in Samara, Russia. Accuracy assessment of the derived thematic maps was based on the analysis of the classification confusion matrix statistics computed for each classified map, using for consistency the same set of validation points. We were analyzed and compared Earth Observing-1 (EO-1) Hyperion hyperspectral data to Landsat 8 Operational Land Imager (OLI) and Advance Land Imager (ALI) multispectral data. Hyperspectral imagers, currently available on airborne platforms, provide increased spectral resolution over existing space based sensors that can document detailed information on the distribution of land cover classes, sometimes species level. Results indicate that KNN (95, 94, 88 overall accuracy and .91, .89, .85 kappa coefficient for Hyp, ALI, OLI respectively) shows better results than unsupervised classification (93, 90, 84 overall accuracy and .89, .87, .81 kappa coefficient for Hyp, ALI, OLI respectively). Development of spectral library for land cover classes is a key component needed to facilitate advance analytical techniques to monitor land cover changes. Different land cover classes in Samara were sampled to create a common spectral library for mapping landscape from remotely sensed data. The development of these libraries provides a physical basis for interpretation that is less subject to conditions of specific data sets, to facilitate a global approach to the application of hyperspectral imagers to mapping landscape. In addition, it is demonstrated that the hyperspectral satellite image provides more accurate classification results than those extracted from the multispectral satellite image. The higher classification accuracy by KNN supervised was attributed principally to the ability of this classifier to identify optimal separating classes with low generalization error, thus producing the best possible classes’ separation.This work was partially supported by the Ministry of education and science of the Russian Federation; by the Russian Foundation for Basic Research grants (# 16-41-630761; # 16-29-11698, # 17-01-00972)

    Remote sensing bio-control damage on aquatic invasive alien plant species

    Get PDF
    Aquatic Invasive Alien Plant (AIAP) species are a major threat to freshwater ecosystems, placing great strain on South Africa’s limited water resources. Bio-control programmes have been initiated in an effort to mitigate the negative environmental impacts associated with their presence in non-native areas. Remote sensing can be used as an effective tool to detect, map and monitor bio-control damage on AIAP species. This paper  reconciles previous and current research concerning the application of remote sensing to detect and map bio-control damage on AIAP species. Initially, the spectral characteristics of bio-control damage are  described. Thereafter, the potential of remote sensing chlorophyll content and chlorophyll fluorescence as  pre-visual indicators of bio-control damage are reviewed and synthesised. The utility of multispectral and  hyperspectral sensors for mapping different severities of bio-control damage are also discussed. Popular  machine learning algorithms that offer operational potential to classify bio-control damage are proposed. This paper concludes with the challenges of remote sensing bio-control damage as well as proposes  recommendations to guide future research to successfully detect and map bio-control damage on AIAP  species

    Remote sensing for biodiversity monitoring: a review of methods for biodiversity indicator extraction and assessment of progress towards international targets

    Get PDF
    Recognizing the imperative need for biodiversity protection, the Convention on Biological Diversity (CBD) has recently established new targets towards 2020, the so-called Aichi targets, and updated proposed sets of indicators to quantitatively monitor the progress towards these targets. Remote sensing has been increasingly contributing to timely, accurate, and cost-effective assessment of biodiversity-related characteristics and functions during the last years. However, most relevant studies constitute individual research efforts, rarely related with the extraction of widely adopted CBD biodiversity indicators. Furthermore, systematic operational use of remote sensing data by managing authorities has still been limited. In this study, the Aichi targets and the related CBD indicators whose monitoring can be facilitated by remote sensing are identified. For each headline indicator a number of recent remote sensing approaches able for the extraction of related properties are reviewed. Methods cover a wide range of fields, including: habitat extent and condition monitoring; species distribution; pressures from unsustainable management, pollution and climate change; ecosystem service monitoring; and conservation status assessment of protected areas. The advantages and limitations of different remote sensing data and algorithms are discussed. Sorting of the methods based on their reported accuracies is attempted, when possible. The extensive literature survey aims at reviewing highly performing methods that can be used for large-area, effective, and timely biodiversity assessment, to encourage the more systematic use of remote sensing solutions in monitoring progress towards the Aichi targets, and to decrease the gaps between the remote sensing and management communities

    Machine learning classification and accuracy assessment from high-resolution images of coastal wetlands

    Get PDF
    High-resolution images obtained by multispectral cameras mounted on Unmanned Aerial Vehicles (UAVs) are helping to capture the heterogeneity of the environment in images that can be discretized in categories during a classification process. Currently, there is an increasing use of supervised machine learning (ML) classifiers to retrieve accurate results using scarce datasets with samples with non-linear relationships. We compared the accuracies of two ML classifiers using a pixel and object analysis approach in six coastal wetland sites. The results show that the Random Forest (RF) performs better than K-Nearest Neighbors (KNN) algorithm in the classification of pixels and objects and the classification based on pixel analysis is slightly better than the object-based analysis. The agreement between the classifications of objects and pixels is higher in Random Forest. This is likely due to the heterogeneity of the study areas, where pixel-based classifications are most appropriate. In addition, from an ecological perspective, as these wetlands are heterogeneous, the pixel-based classification reflects a more realistic interpretation of plant community distribution

    Remote sensing for the Spanish forests in the 21st century: a review of advances, needs, and opportunities

    Get PDF
    [EN] Forest ecosystems provide a host of services and societal benefits, including carbon storage, habitat for fauna, recreation, and provision of wood or non-wood products. In a context of complex demands on forest resources, identifying priorities for biodiversity and carbon budgets require accurate tools with sufficient temporal frequency. Moreover, understanding long term forest dynamics is necessary for sustainable planning and management. Remote sensing (RS) is a powerful means for analysis, synthesis, and report, providing insights and contributing to inform decisions upon forest ecosystems. In this communication we review current applications of RS techniques in Spanish forests, examining possible trends, needs, and opportunities offered by RS in a forestry context. Currently, wall-to-wall optical and LiDAR data are extensively used for a wide range of applications-many times in combination-whilst radar or hyperspectral data are rarely used in the analysis of Spanish forests. Unmanned Aerial Vehicles (UAVs) carrying visible and infrared sensors are gaining ground in acquisition of data locally and at small scale, particularly for health assessments. Forest fire identification and characterization are prevalent applications at the landscape scale, whereas structural assessments are the most widespread analyses carried out at limited extents. Unparalleled opportunities are offered by the availability of diverse RS data like those provided by the European Copernicus programme and recent satellite LiDAR launches, processing capacity, and synergies with other ancillary sources to produce information of our forests. Overall, we live in times of unprecedented opportunities for monitoring forest ecosystems with a growing support from RS technologies.Part of this work was funded by the Spanish Ministry of Science, innovation and University through the project AGL2016-76769-C2-1-R "Influence of natural disturbance regimes and management on forests dynamics. structure and carbon balance (FORESTCHANGE)".Gómez, C.; Alejandro, P.; Hermosilla, T.; Montes, F.; Pascual, C.; Ruiz Fernández, LÁ.; Álvarez-Taboada, F.... (2019). Remote sensing for the Spanish forests in the 21st century: a review of advances, needs, and opportunities. Forest Systems. 28(1):1-33. https://doi.org/10.5424/fs/2019281-14221S133281Ungar S, Pearlman J, Mendenhall J, Reuter D, 2003. Overview of the Earth Observing-1 (EO-1) mission. IEEE T Geosci Remote 41: 1149−1159.Valbuena R, Mauro F, Arjonilla FJ, Manzanera JA, 2011. Comparing Airborne Laser Scanning-Imagery Fusion Methods Based on Geometric Accuracy in Forested Areas. Remote Sens Environ 115(8): 1942-1956.Valbuena R, Mauro F, Rodríguez-Solano R, Manzanera JA, 2012. Partial Least Squares for Discriminating Variance Components in GNSS Accuracy Obtained Under Scots Pine Canopies. Forest Sci 58(2): 139-153.Valbuena R, De Blas A, Martín Fernández S, Maltamo M, Nabuurs GJ, Manzanera JA, 2013a. Within-Species Benefits of Back-projecting Laser Scanner and Multispectral Sensors in Monospecific P. sylvestris Forests. Eur J Remote Sens 46: 401-416.Valbuena R, Maltamo M, Martín-Fernández S, Packalen P, Pascual C, Nabuurs G-J, 2013b. Patterns of covariance between airborne laser scanning metrics and Lorenz curve descriptors of tree size inequality. Can J Remote Sens 39(1): 18-31.Valbuena R, Packalen P, García-Abril A, Mehtätalo L, Maltamo M, 2013c. Characterizing Forest Structural Types and Shelterwood Dynamics from Lorenz-based Indicators Predicted by Airborne Laser Scanning. Can J For Res 43: 1063-1074.Valbuena R, Maltamo M, Packalen P, 2016a. Classification of Multi-Layered Forest Development Classes from Low-Density National Airborne LiDAR Datasets. Forestry 89: 392-341.Valbuena R, Maltamo M, Packalen P, 2016b. Classification of Forest Development Stages from National Low-Density LiDAR Datasets: a Comparison of Machine Learning Methods. Revista de Teledetección 45: 15-25.Valbuena R, Hernando A, Manzanera JA, Martínez-Falero E, García-Abril A, Mola-Yudego B, 2017a. Most Similar Neighbour Imputation of Forest Attributes Using Metrics Derived from Combined Airborne LIDAR and Multispectral Sensors. Int J Digit Earth 11 (12): 1205-1218.Valbuena R, Hernando A, Manzanera JA, Görgens EB, Almeida DRA, Mauro F, García-Abril A, Coomes DA, 2017b. Enhancing of accuracy assessment for forest above-ground biomass estimates obtained from remote sensing via hypothesis testing and overfitting evaluation. Eco Mod 622: 15-26.Valbuena-Rabadán M, Santamaría-Pe-a J, Sanz-Adán F, 2016. Estimation of diameter and height of individual trees for Pinus sylvestris L. based on the individualising of crowns using airborne LiDAR and the National Forest Inventory data. For Sys 25(1): e046Varo-Martínez MA, Navarro-Cerrillo RM, Hernández-Clemente R, Duque-Lazo J, 2017. Semi-automated stand delineation in Mediterranean Pinus sylvestris plantations through segmentation of LiDAR data: The influence of pulse density. Int J Appl Earth Obs 56: 54-64.Vázquez de la Cueva A, 2008. Structural attributes of three forest types in central Spain and Landsat ETM+ information evaluated with redundancy analysis. Int J Remote Sens 29: 5657-5676.Verdú F, Salas J, 2010. Cartografía de áreas quemadas mediante análisis visual de imágenes de satélite en la Espa-a peninsular para el periodo 1991–2005. Geofocus 10: 54–81.Viana-Soto A, Aguado I, Martínez S, 2017. Assessment of post-fire vegetation recovery using fire severity and geographical data in the Mediterranean region (Spain). Environments 4: 90.Vicente-Serrano SG, Pérez-Cabello F, Lasanta T, 2011. Pinus halepensis regeneration after a wildfire in a semiarid environment: assessment using multitemporal Landsat images. Int J Wildland Fire 20Ñ 195-208.Viedma O, Quesada J, Torres I, De Santis A, Moreno JM, 2015. Fire severity in a large fire in a Pinus pinaster forest is highly predictable from burning conditions, stand structure, and topography. Ecosystems 18: 237-250.Yebra M, Chuvieco E, 2009. Generation of a species-specific look-up table for fuel moisture content assessment. IEEE J Selected topics in applied earth observation and RS 2 (1): 21-26.White JC, Wulder MA, Varhola A, Vastaranta M, Coops NC, Cook BD, Pitt D, Woods M, 2013. A best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approach. Natural Resources Canada, Canadian Forest Service, Canadian Wood Fibre Centre, Victoria, BC. Information Report FI-X-010, 39 pp.White JC, Wulder MA, Hobart GW, Luther JE, Hermosilla T, Griffiths P, Coops NC, Hall RJ, Hostert P, Dyk A, Guindon L, 2014. Pixel-based image compositing for large-area dense time series applications and science. Can J Remote Sens 40 (3): 192-212.White JC, Coops NC, Wulder MA, Vastaranta M, Hilker T, Tompalski P, 2016. Remote sensing technologies for enhancing forest inventories: a review. Can J Remote Sens 42: 619-641.White JC, Wulder MA, Hermosilla T, Coops NC, Hobart GW, 2017. A nationwide characterization of 25 years of forest disturbance and recovery for Canada using Landsat time series. Remote Sens Environ 194: 303-321.Wulder MA, 1998. Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters. Progr Phys Geog 22 (4): 449-476.Wulder MA, Dymond CC, 2004. Remote sensing in survey of Mountain Pine impacts: review and recommendations. MPBI Report. Canadian Forest Service. Natural Resources Canada, Victoria, BC, Canada. 89 pp.Wulder MA, Masek JG, Cohen WB, Loveland TR, Woodcock CE, 2012. Opening the archive: how free data has enabled the science and monitoring promise of Landsat. Remote Sens Environ 122: 2-10.Wulder MA, Hilker T, White JC, Coops NC, Masek JG, Pflugmacher D, Crevier Y, 2015. Virtual constellations for global terrestrial monitoring. Remote Sens Environ 170: 62-76.Wulder MA, White JC, Loveland TR, Woodcock CE, Belward AS, Cohen WB, Fosnight EA, Shaw J, Masek JG, Roy DP, 2016. The global Landsat archive: Status, consolidation, and direction. Remote Sens Environ 185: 271-283.Xie Q, Zhu J, Wang Ch, Fu H, López-Sánchez JM, Ballester-Berman JD, 2017. A modified dual-baseline PolInSAR method for forest height estimation. Remote Sens-Basel 9 (8): 819.Xie Y, Sha Z, Yu M, 2008. Remote sensing imagery in vegetation mapping: a review. J Plant Ecol 1 (1): 9-23.Zald HSJ, Wulder MA, White JC, Hilker T, Hermosilla T, Hobart GW, Coops NC, 2016. Integrating Landsat pixel composites and change metrics with LiDAR plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada. Remote Sens Environ 176: 188-201.Zarco-Tejada PJ, Diaz-Varela R, Angileri V, Loudjani P, 2014. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. Eur J Agron 55: 89-99.Zarco-Tejada PJ, Hornero A, Hernández-Clemente R, Beck PSA, 2018. Understanding the temporal dimension of the red-edge spectral region for forest decline detection using high-resolution hyperspectral and Sentinel-2A imagery. ISPRS J Photogramm 137: 134-148

    Remote Sensing of Plant Biodiversity

    Get PDF
    This Open Access volume aims to methodologically improve our understanding of biodiversity by linking disciplines that incorporate remote sensing, and uniting data and perspectives in the fields of biology, landscape ecology, and geography. The book provides a framework for how biodiversity can be detected and evaluated—focusing particularly on plants—using proximal and remotely sensed hyperspectral data and other tools such as LiDAR. The volume, whose chapters bring together a large cross-section of the biodiversity community engaged in these methods, attempts to establish a common language across disciplines for understanding and implementing remote sensing of biodiversity across scales. The first part of the book offers a potential basis for remote detection of biodiversity. An overview of the nature of biodiversity is described, along with ways for determining traits of plant biodiversity through spectral analyses across spatial scales and linking spectral data to the tree of life. The second part details what can be detected spectrally and remotely. Specific instrumentation and technologies are described, as well as the technical challenges of detection and data synthesis, collection and processing. The third part discusses spatial resolution and integration across scales and ends with a vision for developing a global biodiversity monitoring system. Topics include spectral and functional variation across habitats and biomes, biodiversity variables for global scale assessment, and the prospects and pitfalls in remote sensing of biodiversity at the global scale

    Remote Sensing of Plant Biodiversity

    Get PDF
    At last, here it is. For some time now, the world has needed a text providing both a new theoretical foundation and practical guidance on how to approach the challenge of biodiversity decline in the Anthropocene. This is a global challenge demanding global approaches to understand its scope and implications. Until recently, we have simply lacked the tools to do so. We are now entering an era in which we can realistically begin to understand and monitor the multidimensional phenomenon of biodiversity at a planetary scale. This era builds upon three centuries of scientific research on biodiversity at site to landscape levels, augmented over the past two decades by airborne research platforms carrying spectrometers, lidars, and radars for larger-scale observations. Emerging international networks of fine-grain in-situ biodiversity observations complemented by space-based sensors offering coarser-grain imagery—but global coverage—of ecosystem composition, function, and structure together provide the information necessary to monitor and track change in biodiversity globally. This book is a road map on how to observe and interpret terrestrial biodiversity across scales through plants—primary producers and the foundation of the trophic pyramid. It honors the fact that biodiversity exists across different dimensions, including both phylogenetic and functional. Then, it relates these aspects of biodiversity to another dimension, the spectral diversity captured by remote sensing instruments operating at scales from leaf to canopy to biome. The biodiversity community has needed a Rosetta Stone to translate between the language of satellite remote sensing and its resulting spectral diversity and the languages of those exploring the phylogenetic diversity and functional trait diversity of life on Earth. By assembling the vital translation, this volume has globalized our ability to track biodiversity state and change. Thus, a global problem meets a key component of the global solution. The editors have cleverly built the book in three parts. Part 1 addresses the theory behind the remote sensing of terrestrial plant biodiversity: why spectral diversity relates to plant functional traits and phylogenetic diversity. Starting with first principles, it connects plant biochemistry, physiology, and macroecology to remotely sensed spectra and explores the processes behind the patterns we observe. Examples from the field demonstrate the rising synthesis of multiple disciplines to create a new cross-spatial and spectral science of biodiversity. Part 2 discusses how to implement this evolving science. It focuses on the plethora of novel in-situ, airborne, and spaceborne Earth observation tools currently and soon to be available while also incorporating the ways of actually making biodiversity measurements with these tools. It includes instructions for organizing and conducting a field campaign. Throughout, there is a focus on the burgeoning field of imaging spectroscopy, which is revolutionizing our ability to characterize life remotely. Part 3 takes on an overarching issue for any effort to globalize biodiversity observations, the issue of scale. It addresses scale from two perspectives. The first is that of combining observations across varying spatial, temporal, and spectral resolutions for better understanding—that is, what scales and how. This is an area of ongoing research driven by a confluence of innovations in observation systems and rising computational capacity. The second is the organizational side of the scaling challenge. It explores existing frameworks for integrating multi-scale observations within global networks. The focus here is on what practical steps can be taken to organize multi-scale data and what is already happening in this regard. These frameworks include essential biodiversity variables and the Group on Earth Observations Biodiversity Observation Network (GEO BON). This book constitutes an end-to-end guide uniting the latest in research and techniques to cover the theory and practice of the remote sensing of plant biodiversity. In putting it together, the editors and their coauthors, all preeminent in their fields, have done a great service for those seeking to understand and conserve life on Earth—just when we need it most. For if the world is ever to construct a coordinated response to the planetwide crisis of biodiversity loss, it must first assemble adequate—and global—measures of what we are losing

    Image Analysis and Machine Learning in Agricultural Research

    Get PDF
    Agricultural research has been a focus for academia and industry to improve human well-being. Given the challenges in water scarcity, global warming, and increased prices of fertilizer, and fossil fuel, improving the efficiency of agricultural research has become even more critical. Data collection by humans presents several challenges including: 1) the subjectiveness and reproducibility when doing the visual evaluation, 2) safety when dealing with high toxicity chemicals or severe weather events, 3) mistakes cannot be avoided, and 4) low efficiency and speed. Image analysis and machine learning are more versatile and advantageous in evaluating different plant characteristics, and this could help with agricultural data collection. In the first chapter, information related to different types of imaging (e.g., RGB, multi/hyperspectral, and thermal imaging) was explored in detail for its advantages in different agriculture applications. The process of image analysis demonstrated how target features were extracted for analysis including shape, edge, texture, and color. After acquiring features information, machine learning can be used to automatically detect or predict features of interest such as disease severity. In the second chapter, case studies of different agricultural applications were demonstrated including: 1) leaf damage symptoms, 2) stress evaluation, 3) plant growth evaluation, 4) stand/insect counting, and 5) evaluation for produce quality. Case studies showed that the use of image analysis is often more advantageous than visual rating. Advantages of image analysis include increased objectivity, speed, and more reproducibly reliable results. In the third chapter, machine learning was explored using romaine lettuce images from RD4AG to automatically grade for bolting and compactness (two of the important parameters for lettuce quality). Although the accuracy is at 68.4 and 66.6% respectively, a much larger data base and many improvements are needed to increase the model accuracy and reliability. With the advancement in cameras, computers with high computing power, and the development of different algorithms, image analysis and machine learning have the potential to replace part of the labor and improve the current data collection procedure in agricultural research. Advisor: Gary L. Hei

    Mapping urban surface materials with imaging spectroscopy data on different spatial scales

    Get PDF
    This work focuses on the development of methods for mapping urban surface materials by means of imaging spectroscopy data with different spatial resolution. General findings from this work represent a sensor- and site-independent framework for the automated extraction of spectrally pure pixels using an urban image spectral library while coping with its potential incompleteness. The extraction of spectrally pure pixels serves as a basic prerequisite for the subsequent use of image analysis methods to obtain detailed urban surface material maps. These material maps enabled the determination of gradual material transitions that were finally related to complex spectral mixtures resulting from 30 m spatial resolution imaging spectroscopy data to analyse typical material compositions within certain administrative units. The findings demonstrate the great potential of using upcoming spaceborne imaging spectroscopy data for a regular area-wide mapping of surface materials in urban areas. Im Fokus dieser Arbeit stand die Entwicklung von Methoden zur Kartierung urbaner Oberflächenmaterialien mittels abbildender Spektroskopiedaten unterschiedlicher räumlicher Auflösung. Das vorgestellte Konzept zur automatisierten sensor- und ortsunabhängigen Extraktion spektral reiner Pixel aus flugzeuggetragenen Fernerkundungsdaten berücksichtigt dabei die mögliche Unvollständigkeit einer urbanen Bildspektralbibliothek. Die Extraktion spektral reiner Pixel dient als Grundvoraussetzung für den späteren Einsatz von Bildanalyseverfahren zur Gewinnung detaillierter Kartierungen urbaner Oberflächenmaterialien. Aus diesen sind Materialgradienten ableitbar, die mit den komplexen Spektralmischungen aus Hyperspektraldaten mit 30 m räumlicher Auflösung in Verbindung gebracht wurden. Die Analyse typischer Materialzusammensetzungen innerhalb städtischer Verwaltungseinheiten zeigt das enorme Potential zukünftiger Hyperspektralsatelliten für die Erfassung des Materialvorkommens von Städten
    corecore