3,293 research outputs found

    Time and position sensitive single photon detector for scintillator read-out

    Full text link
    We have developed a photon counting detector system for combined neutron and gamma radiography which can determine position, time and intensity of a secondary photon flash created by a high-energy particle or photon within a scintillator screen. The system is based on a micro-channel plate photomultiplier concept utilizing image charge coupling to a position- and time-sensitive read-out anode placed outside the vacuum tube in air, aided by a standard photomultiplier and very fast pulse-height analyzing electronics. Due to the low dead time of all system components it can cope with the high throughput demands of a proposed combined fast neutron and dual discrete energy gamma radiography method (FNDDER). We show tests with different types of delay-line read-out anodes and present a novel pulse-height-to-time converter circuit with its potential to discriminate gamma energies for the projected FNDDER devices for an automated cargo container inspection system (ACCIS).Comment: Proceedings of FNDA 201

    Aika-digitaalimuunnin laajakaistaisiin aikapohjaisiin analogia-digitaalimuuntimiin

    Get PDF
    Modern deeply scaled semiconductor processes make the design of voltage-domain circuits increasingly challenging. On the contrary, the area and power consumption of digital circuits are improving with every new process node. Consequently, digital solutions are designed in place of their purely analog counterparts in applications such as analog-to-digital (A/D) conversion. Time-based analog-to-digital converters (ADC) employ digital-intensive architectures by processing analog quantities in time-domain. The quantization step of the time-based A/D-conversion is carried out by a time-to-digital converter (TDC). A free-running ring oscillator -based TDC design is presented for use in wideband time-based ADCs. The proposed architecture aims to maximize time resolution and full-scale range, and to achieve error resilient conversion performance with minimized power and area consumptions. The time resolution is maximized by employing a high-frequency multipath ring oscillator, and the full-scale range is extended using a high-speed gray counter. The error resilience is achieved by custom sense-amplifier -based sampling flip-flops, gray coded counter and a digital error correction algorithm for counter sampling error correction. The implemented design achieves up to 9-bit effective resolution at 250 MS/s with 4.3 milliwatt power consumption.Modernien puolijohdeteknologioiden skaalautumisen seurauksena jännitetason piirien suunnittelu tulee entistä haasteellisemmaksi. Toisaalta digitaalisten piirirakenteiden pinta-ala sekä tehonkulutus pienenevät prosessikehityksen myötä. Tästä syystä digitaalisia ratkaisuja suunnitellaan vastaavien puhtaasti analogisien rakenteiden tilalle. Analogia-digitaalimuunnos (A/D-muunnos) voidaan toteuttaa jännitetason sijaan aikatasossa käyttämällä aikapohjaisia A/D-muuntimia, jotka ovat rakenteeltaan pääosin digitaalisia. Kvantisointivaihe aikapohjaisessa A/D-muuntimessa toteutetaan aika-digitaalimuuntimella. Työ esittelee vapaasti oskilloivaan silmukkaoskillaattoriin perustuvan aika-digitaalimuuntimen, joka on suunniteltu käytettäväksi laajakaistaisessa aikapohjaisessa A/D-muuntimessa. Esitelty rakenne pyrkii maksimoimaan muuntimen aikaresoluution sekä muunnosalueen, sekä saavuttamaan virhesietoisen muunnostoiminnan minimoidulla tehon sekä pinta-alan kulutuksella. Aikaresoluutio on maksimoitu hyödyntämällä suuritaajuista monipolkuista silmukkaoskillaattoria, ja muunnosalue on maksimoitu nopealla Gray-koodi -laskuripiirillä. Muunnosprosessin virhesietoisuus on saavutettu toteuttamalla näytteistys herkillä kiikkuelementeillä, hyödyntämällä Gray-koodattua laskuria, sekä jälkiprosessoimalla laskurin näytteistetyt arvot virheenkorjausalgoritmilla. Esitelty muunnintoteutus saavuttaa 9 bitin efektiivisen resoluution 250 MS/s näytetaajuudella ja 4.3 milliwatin tehonkulutuksella

    An On-chip PVT Resilient Short Time Measurement Technique

    Get PDF
    As the CMOS technology nodes continue to shrink, the challenges of developing manufacturing tests for integrated circuits become more difficult to address. To detect parametric faults of new generation of integrated circuits such as 3D ICs, on-chip short-time intervals have to be accurately measured. The accuracy of an on-chip time measurement module is heavily affected by Process, supply Voltage, and Temperature (PVT) variations. This work presents a new on-chip time measurement scheme where the undesired effects of PVT variations are attenuated significantly. To overcome the effects of PVT variations on short-time measurement, phase locking methodology is utilized to implement a robust Vernier delay line. A prototype Time-to-Digital Converter (TDC) has been fabricated using TSMC 0.180 µm CMOS technology and experimental measurements have been carried out to verify the performance parameters of the TDC. The measurement results indicate that the proposed solution reduces the effects of PVT variations by more than tenfold compared to a conventional on-chip TDC. A coarse-fine time interval measurement scheme which is resilient to the PVT variations is also proposed. In this approach, two Delay Locked Loops (DLLs) are utilized to minimize the effects of PVT on the measured time intervals. The proposed scheme has been implemented using CMOS 65nm technology. Simulation results using Advanced Design System (ADS) indicate that the measurement resolution varies by less than 0.1ps with ±15% variations of the supply voltage. The proposed method also presents a robust performance against process and temperature variations. The measurement accuracy changes by a maximum of 0.05ps from slow to fast corners. The implemented TDC presents a robust performance against temperature variations too and its measurement accuracy varies a few femto-seconds from -40 ºC to +100 ºC. The principle of robust short-time measurement was used in practice to design and implement a state-of-the-art Coordinate Measuring Machine (CMM) for an industry partner to measure geometrical features of transmission parts with micrometer resolution. The solution developed for the industry partner has resulted in a patent and a product in the market. The on-chip short-time measurement technology has also been utilized to develop a solution to detect Hardware Trojans

    Design and Implementation of Low Power Time-To-Digital Converter using MGDI Technique

    Get PDF
    This paper introduces a novel Time to Digital Converter (TDC) architecture based on the Modified Gate Diffusion Input (MGDI) technique, which is derived from the well-established GDI method. Through the utilization of MGDI-based logic gates and digital circuitry, this innovative approach leads to a substantial reduction in the number of transistors required for implementation. As a result, it offers significant advantages in terms of circuit area, power consumption, and propagation delay, while simultaneously simplifying the complexity of the overall logic design. The functional blocks within the TDC have been optimized to efficiently process an internal clock frequency of 5MHz. This achievement is realized using cutting-edge 90nm MGDI technology, operating at a supply voltage of 1V. Practical implementation of this design can be carried out seamlessly with Cadence Virtuoso tools in the 90nm technology node. In essence, this research effort represents a promising advancement in the realm of time-to-digital conversion. By harnessing the capabilities of MGDI and its transistor-saving attributes, the proposed TDC not only enhances performance but also addresses critical concerns such as power efficiency and chip area utilization. These advancements make it a compelling choice for applications requiring precise time measurements, while the compatibility with contemporary technology nodes ensures its relevance and applicability in modern integrated circuit design

    Development and Performance Verification of the GANDALF High-Resolution Transient Recorder System

    Full text link
    With present-day detectors in high energy physics one often faces fast analog pulses of a few nanoseconds length which cover large dynamic ranges. In many experiments both amplitude and timing information have to be measured with high accuracy. Additionally, the data rate per readout channel can reach several MHz, which leads to high demands on the separation of pile-up pulses. For an upgrade of the COMPASS experiment at CERN we have designed the GANDALF transient recorder with a resolution of 12bit@1GS/s and an analog bandwidth of 500\:MHz. Signals are digitized with high precision and processed by fast algorithms to extract pulse arrival times and amplitudes in real-time and to generate trigger signals for the experiment. With up to 16 analog channels, deep memories and a high data rate interface, this 6U-VME64x/VXS module is not only a dead-time free digitization unit but also has huge numerical capabilities provided by the implementation of a Virtex5-SXT FPGA. Fast algorithms implemented in the FPGA may be used to disentangle possible pile-up pulses and determine timing information from sampled pulse shapes with a time resolution better than 50 ps.Comment: 5 pages, 9 figure
    corecore