155 research outputs found

    Integrated Spatio-Temporal Deep Clustering (ISTDC) for cognitive workload assessment

    Get PDF
    Traditional high-dimensional electroencephalography (EEG) features (spectral or temporal) may not always attain satisfactory results in cognitive workload estimation. In contrast, deep representation learning (DRL) transforms high-dimensional data into cluster-friendly low-dimensional feature space. Therefore, this paper proposes an Integrated Spatio-Temporal Deep Clustering (ISTDC) model that uses DRL followed by a clustering method to achieve better clustering performance. The proposed model is illustrated using four Algorithms and Variational Bayesian Gaussian Mixture Model (VBGMM) clustering method. Temporal and spatial Variational Auto Encoder (VAE) models (mentioned in Algorithm 2 and Algorithm 3) learn temporal and spatial latent features from sequence-wise EEG signals and scalp topographical maps using the Long short-term memory and Convolutional Neural Network models. The concatenated spatio-temporal latent feature (mentioned in Algorithm 4) is passed to the VBGMM clustering method to efficiently estimate workload levels of -back task. For the 0-back vs. 2-back task, the proposed model achieves the maximum mean clustering accuracy of 98.0%, and it improves by 11.0% over the state-of-the-art method. The results also indicate that the proposed multimodal approach outperforms temporal and spatial latent feature-based unimodal models in workload assessment

    Artificial Intelligence for Cognitive Health Assessment: State-of-the-Art, Open Challenges and Future Directions

    Get PDF
    The subjectivity and inaccuracy of in-clinic Cognitive Health Assessments (CHA) have led many researchers to explore ways to automate the process to make it more objective and to facilitate the needs of the healthcare industry. Artificial Intelligence (AI) and machine learning (ML) have emerged as the most promising approaches to automate the CHA process. In this paper, we explore the background of CHA and delve into the extensive research recently undertaken in this domain to provide a comprehensive survey of the state-of-the-art. In particular, a careful selection of significant works published in the literature is reviewed to elaborate a range of enabling technologies and AI/ML techniques used for CHA, including conventional supervised and unsupervised machine learning, deep learning, reinforcement learning, natural language processing, and image processing techniques. Furthermore, we provide an overview of various means of data acquisition and the benchmark datasets. Finally, we discuss open issues and challenges in using AI and ML for CHA along with some possible solutions. In summary, this paper presents CHA tools, lists various data acquisition methods for CHA, provides technological advancements, presents the usage of AI for CHA, and open issues, challenges in the CHA domain. We hope this first-of-its-kind survey paper will significantly contribute to identifying research gaps in the complex and rapidly evolving interdisciplinary mental health field

    Learning to process with spikes and to localise pulses

    Get PDF
    In the last few decades, deep learning with artificial neural networks (ANNs) has emerged as one of the most widely used techniques in tasks such as classification and regression, achieving competitive results and in some cases even surpassing human-level performance. Nonetheless, as ANN architectures are optimised towards empirical results and departed from their biological precursors, how exactly human brains process information using these short electrical pulses called spikes remains a mystery. Hence, in this thesis, we explore the problem of learning to process with spikes and to localise pulses. We first consider spiking neural networks (SNNs), a type of ANN that more closely mimic biological neural networks in that neurons communicate with one another using spikes. This unique architecture allows us to look into the role of heterogeneity in learning. Since it is conjectured that the information is encoded by the timing of spikes, we are particularly interested in the heterogeneity of time constants of neurons. We then trained SNNs for classification tasks on a range of visual and auditory neuromorphic datasets, which contain streams of events (spike times) instead of the conventional frame-based data, and show that the overall performance is improved by allowing the neurons to have different time constants, especially on tasks with richer temporal structure. We also find that the learned time constants are distributed similarly to those experimentally observed in some mammalian cells. Besides, we demonstrate that learning with heterogeneity improves robustness against hyperparameter mistuning. These results suggest that heterogeneity may be more than the byproduct of noisy processes and perhaps serves a key role in learning in changing environments, yet heterogeneity has been overlooked in basic artificial models. While neuromorphic datasets, which are often captured by neuromorphic devices that closely model the corresponding biological systems, have enabled us to explore the more biologically plausible SNNs, there still exists a gap in understanding how spike times encode information in actual biological neural networks like human brains, as such data is difficult to acquire due to the trade-off between the timing precision and the number of cells simultaneously recorded electrically. Instead, what we usually obtain is the low-rate discrete samples of trains of filtered spikes. Hence, in the second part of the thesis, we focus on a different type of problem involving pulses, that is to retrieve the precise pulse locations from these low-rate samples. We make use of the finite rate of innovation (FRI) sampling theory, which states that perfect reconstruction is possible for classes of continuous non-bandlimited signals that have a small number of free parameters. However, existing FRI methods break down under very noisy conditions due to the so-called subspace swap event. Thus, we present two novel model-based learning architectures: Deep Unfolded Projected Wirtinger Gradient Descent (Deep Unfolded PWGD) and FRI Encoder-Decoder Network (FRIED-Net). The former is based on the existing iterative denoising algorithm for subspace-based methods, while the latter models directly the relationship between the samples and the locations of the pulses using an autoencoder-like network. Using a stream of K Diracs as an example, we show that both algorithms are able to overcome the breakdown inherent in the existing subspace-based methods. Moreover, we extend our FRIED-Net framework beyond conventional FRI methods by considering when the shape is unknown. We show that the pulse shape can be learned using backpropagation. This coincides with the application of spike detection from real-world calcium imaging data, where we achieve competitive results. Finally, we explore beyond canonical FRI signals and demonstrate that FRIED-Net is able to reconstruct streams of pulses with different shapes.Open Acces

    EXplainable Artificial Intelligence: enabling AI in neurosciences and beyond

    Get PDF
    The adoption of AI models in medicine and neurosciences has the potential to play a significant role not only in bringing scientific advancements but also in clinical decision-making. However, concerns mounts due to the eventual biases AI could have which could result in far-reaching consequences particularly in a critical field like biomedicine. It is challenging to achieve usable intelligence because not only it is fundamental to learn from prior data, extract knowledge and guarantee generalization capabilities, but also to disentangle the underlying explanatory factors in order to deeply understand the variables leading to the final decisions. There hence has been a call for approaches to open the AI `black box' to increase trust and reliability on the decision-making capabilities of AI algorithms. Such approaches are commonly referred to as XAI and are starting to be applied in medical fields even if not yet fully exploited. With this thesis we aim at contributing to enabling the use of AI in medicine and neurosciences by taking two fundamental steps: (i) practically pervade AI models with XAI (ii) Strongly validate XAI models. The first step was achieved on one hand by focusing on XAI taxonomy and proposing some guidelines specific for the AI and XAI applications in the neuroscience domain. On the other hand, we faced concrete issues proposing XAI solutions to decode the brain modulations in neurodegeneration relying on the morphological, microstructural and functional changes occurring at different disease stages as well as their connections with the genotype substrate. The second step was as well achieved by firstly defining four attributes related to XAI validation, namely stability, consistency, understandability and plausibility. Each attribute refers to a different aspect of XAI ranging from the assessment of explanations stability across different XAI methods, or highly collinear inputs, to the alignment of the obtained explanations with the state-of-the-art literature. We then proposed different validation techniques aiming at practically fulfilling such requirements. With this thesis, we contributed to the advancement of the research into XAI aiming at increasing awareness and critical use of AI methods opening the way to real-life applications enabling the development of personalized medicine and treatment by taking a data-driven and objective approach to healthcare

    Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research

    Full text link
    By promising more accurate diagnostics and individual treatment recommendations, deep neural networks and in particular convolutional neural networks have advanced to a powerful tool in medical imaging. Here, we first give an introduction into methodological key concepts and resulting methodological promises including representation and transfer learning, as well as modelling domain-specific priors. After reviewing recent applications within neuroimaging-based psychiatric research, such as the diagnosis of psychiatric diseases, delineation of disease subtypes, normative modeling, and the development of neuroimaging biomarkers, we discuss current challenges. This includes for example the difficulty of training models on small, heterogeneous and biased data sets, the lack of validity of clinical labels, algorithmic bias, and the influence of confounding variables

    Development of linguistic linked open data resources for collaborative data-intensive research in the language sciences

    Get PDF
    Making diverse data in linguistics and the language sciences open, distributed, and accessible: perspectives from language/language acquistiion researchers and technical LOD (linked open data) researchers. This volume examines the challenges inherent in making diverse data in linguistics and the language sciences open, distributed, integrated, and accessible, thus fostering wide data sharing and collaboration. It is unique in integrating the perspectives of language researchers and technical LOD (linked open data) researchers. Reporting on both active research needs in the field of language acquisition and technical advances in the development of data interoperability, the book demonstrates the advantages of an international infrastructure for scholarship in the field of language sciences. With contributions by researchers who produce complex data content and scholars involved in both the technology and the conceptual foundations of LLOD (linguistics linked open data), the book focuses on the area of language acquisition because it involves complex and diverse data sets, cross-linguistic analyses, and urgent collaborative research. The contributors discuss a variety of research methods, resources, and infrastructures. Contributors Isabelle Barrière, Nan Bernstein Ratner, Steven Bird, Maria Blume, Ted Caldwell, Christian Chiarcos, Cristina Dye, Suzanne Flynn, Claire Foley, Nancy Ide, Carissa Kang, D. Terence Langendoen, Barbara Lust, Brian MacWhinney, Jonathan Masci, Steven Moran, Antonio Pareja-Lora, Jim Reidy, Oya Y. Rieger, Gary F. Simons, Thorsten Trippel, Kara Warburton, Sue Ellen Wright, Claus Zin

    Flexible estimation of temporal point processes and graphs

    Get PDF
    Handling complex data types with spatial structures, temporal dependencies, or discrete values, is generally a challenge in statistics and machine learning. In the recent years, there has been an increasing need of methodological and theoretical work to analyse non-standard data types, for instance, data collected on protein structures, genes interactions, social networks or physical sensors. In this thesis, I will propose a methodology and provide theoretical guarantees for analysing two general types of discrete data emerging from interactive phenomena, namely temporal point processes and graphs. On the one hand, temporal point processes are stochastic processes used to model event data, i.e., data that comes as discrete points in time or space where some phenomenon occurs. Some of the most successful applications of these discrete processes include online messages, financial transactions, earthquake strikes, and neuronal spikes. The popularity of these processes notably comes from their ability to model unobserved interactions and dependencies between temporally and spatially distant events. However, statistical methods for point processes generally rely on estimating a latent, unobserved, stochastic intensity process. In this context, designing flexible models and consistent estimation methods is often a challenging task. On the other hand, graphs are structures made of nodes (or agents) and edges (or links), where an edge represents an interaction or relationship between two nodes. Graphs are ubiquitous to model real-world social, transport, and mobility networks, where edges can correspond to virtual exchanges, physical connections between places, or migrations across geographical areas. Besides, graphs are used to represent correlations and lead-lag relationships between time series, and local dependence between random objects. Graphs are typical examples of non-Euclidean data, where adequate distance measures, similarity functions, and generative models need to be formalised. In the deep learning community, graphs have become particularly popular within the field of geometric deep learning. Structure and dependence can both be modelled by temporal point processes and graphs, although predominantly, the former act on the temporal domain while the latter conceptualise spatial interactions. Nonetheless, some statistical models combine graphs and point processes in order to account for both spatial and temporal dependencies. For instance, temporal point processes have been used to model the birth times of edges and nodes in temporal graphs. Moreover, some multivariate point processes models have a latent graph parameter governing the pairwise causal relationships between the components of the process. In this thesis, I will notably study such a model, called the Hawkes model, as well as graphs evolving in time. This thesis aims at designing inference methods that provide flexibility in the contexts of temporal point processes and graphs. This manuscript is presented in an integrated format, with four main chapters and two appendices. Chapters 2 and 3 are dedicated to the study of Bayesian nonparametric inference methods in the generalised Hawkes point process model. While Chapter 2 provides theoretical guarantees for existing methods, Chapter 3 also proposes, analyses, and evaluates a novel variational Bayes methodology. The other main chapters introduce and study model-free inference approaches for two estimation problems on graphs, namely spectral methods for the signed graph clustering problem in Chapter 4, and a deep learning algorithm for the network change point detection task on temporal graphs in Chapter 5. Additionally, Chapter 1 provides an introduction and background preliminaries on point processes and graphs. Chapter 6 concludes this thesis with a summary and critical thinking on the works in this manuscript, and proposals for future research. Finally, the appendices contain two supplementary papers. The first one, in Appendix A, initiated after the COVID-19 outbreak in March 2020, is an application of a discrete-time Hawkes model to COVID-related deaths counts during the first wave of the pandemic. The second work, in Appendix B, was conducted during an internship at Amazon Research in 2021, and proposes an explainability method for anomaly detection models acting on multivariate time series

    Using Unsupervised Learning Methods to Analyse Magnetic Resonance Imaging (MRI) Scans for the Detection of Alzheimer’s Disease

    Get PDF
    Background: Alzheimer’s disease (AD) is the most common cause of dementia, characterised by behavioural and cognitive impairment. The manual diagnosis of AD by doctors is time-consuming and can be ineffective, so machine learning methods are increasingly being proposed to diagnose AD in many recent studies. Most research developing machine learning algorithms to diagnose AD use supervised learning to classify magnetic resonance imaging (MRI) scans. However, supervised learning requires a considerable volume of labelled data and MRI scans are difficult to label. The aim of this thesis was therefore to use unsupervised learning methods to differentiate between MRI scans from people who were cognitively normal (CN), people with mild cognitive impairment (MCI), and people with AD. Objectives: This study applied a statistical method and unsupervised learning methods to discriminate scans from (1) people with CN and with AD; (2) people with stable mild cognitive impairment (sMCI) and with progressive mild cognitive impairment (pMCI); (3) people with CN and with pMCI, using a limited number of labelled structural MRI scans. Methods: Two-sample t-tests were used to detect the regions of interest (ROIs) between each of the two groups (CN vs. AD; sMCI vs. pMCI; CN vs. pMCI), and then an unsupervised learning neural network was employed to extract features from the regions. Finally, a clustering algorithm was implemented to discriminate between each of the two groups based on the extracted features. The approach was tested on baseline brain structural MRI scans from 715 individuals from the Alzheimer’s Disease Neuroimaging Initiative (ADNI), of which 231 were CN, 198 had AD, 152 had sMCI, and 134 were pMCI. The results were evaluated by calculating the overall accuracy, the sensitivity, specificity, and positive and negative predictive values. Results: The abnormal regions around the lower parts of the limbic system were indicated as AD-relevant regions based on the two-sample t-test (p<0.001), and the proposed method yielded an overall accuracy of 0.842 for discriminating between CN and AD, an overall accuracy of 0.672 for discriminating between sMCI and pMCI, and an overall accuracy of 0.776 for discriminating between CN and pMCI. Conclusion: The study combined statistical and unsupervised learning methods to identify scans of people with different stages of AD. This method can detect AD-relevant regions and could be used to accurately diagnose stages of AD; it has the advantage that it does not require large amounts of labelled MRI scans. The performances of the three discriminations were all comparable to those of previous state-of-the-art studies. The research in this thesis could be implemented in the future to help in the automatic diagnosis of AD and provide a basis for diagnosing sMCI and pMCI

    Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries

    Get PDF
    This two-volume set LNCS 12962 and 12963 constitutes the thoroughly refereed proceedings of the 7th International MICCAI Brainlesion Workshop, BrainLes 2021, as well as the RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge, the Federated Tumor Segmentation (FeTS) Challenge, the Cross-Modality Domain Adaptation (CrossMoDA) Challenge, and the challenge on Quantification of Uncertainties in Biomedical Image Quantification (QUBIQ). These were held jointly at the 23rd Medical Image Computing for Computer Assisted Intervention Conference, MICCAI 2020, in September 2021. The 91 revised papers presented in these volumes were selected form 151 submissions. Due to COVID-19 pandemic the conference was held virtually. This is an open access book
    • …
    corecore