269 research outputs found

    Comparison of Spectra in Unsequenced Species

    Get PDF
    International audienceWe introduce a new algorithm for the mass spectromet- ric identication of proteins. Experimental spectra obtained by tandem MS/MS are directly compared to theoretical spectra generated from pro- teins of evolutionarily closely related organisms. This work is motivated by the need of a method that allows the identication of proteins of unsequenced species against a database containing proteins of related organisms. The idea is that matching spectra of unknown peptides to very similar MS/MS spectra generated from this database of annotated proteins can lead to annotate unknown proteins. This process is similar to ortholog annotation in protein sequence databases. The difficulty with such an approach is that two similar peptides, even with just one mod- ication (i.e. insertion, deletion or substitution of one or several amino acid(s)) between them, usually generate very dissimilar spectra. In this paper, we present a new dynamic programming based algorithm: Packet- SpectralAlignment. Our algorithm is tolerant to modications and fully exploits two important properties that are usually not considered: the notion of inner symmetry, a relation linking pairs of spectrum peaks, and the notion of packet inside each spectrum to keep related peaks together. Our algorithm, PacketSpectralAlignment is then compared to SpectralAlignment [1] on a dataset of simulated spectra. Our tests show that PacketSpectralAlignment behaves better, in terms of results and execution tim

    Proteomic profiling and protein identification by MALDI-TOF mass spectrometry in unsequenced parasitic nematodes.

    Get PDF
    Lack of genomic sequence data and the relatively high cost of tandem mass spectrometry have hampered proteomic investigations into helminths, such as resolving the mechanism underpinning globally reported anthelmintic resistance. Whilst detailed mechanisms of resistance remain unknown for the majority of drug-parasite interactions, gene mutations and changes in gene and protein expression are proposed key aspects of resistance. Comparative proteomic analysis of drug-resistant and -susceptible nematodes may reveal protein profiles reflecting drug-related phenotypes. Using the gastro-intestinal nematode, Haemonchus contortus as case study, we report the application of freely available expressed sequence tag (EST) datasets to support proteomic studies in unsequenced nematodes. EST datasets were translated to theoretical protein sequences to generate a searchable database. In conjunction with matrix-assisted laser desorption ionisation time-of-flight mass spectrometry (MALDI-TOF-MS), Peptide Mass Fingerprint (PMF) searching of databases enabled a cost-effective protein identification strategy. The effectiveness of this approach was verified in comparison with MS/MS de novo sequencing with searching of the same EST protein database and subsequent searches of the NCBInr protein database using the Basic Local Alignment Search Tool (BLAST) to provide protein annotation. Of 100 proteins from 2-DE gel spots, 62 were identified by MALDI-TOF-MS and PMF searching of the EST database. Twenty randomly selected spots were analysed by electrospray MS/MS and MASCOT Ion Searches of the same database. The resulting sequences were subjected to BLAST searches of the NCBI protein database to provide annotation of the proteins and confirm concordance in protein identity from both approaches. Further confirmation of protein identifications from the MS/MS data were obtained by de novo sequencing of peptides, followed by FASTS algorithm searches of the EST putative protein database. This study demonstrates the cost-effective use of available EST databases and inexpensive, accessible MALDI-TOF MS in conjunction with PMF for reliable protein identification in unsequenced organisms

    Proteomics: Challenges, Techniques and Possibilities to Overcome Biological Sample Complexity

    Get PDF
    Proteomics is the large-scale study of the structure and function of proteins in complex biological sample. Such an approach has the potential value to understand the complex nature of the organism. Current proteomic tools allow large-scale, high-throughput analyses for the detection, identification, and functional investigation of proteome. Advances in protein fractionation and labeling techniques have improved protein identification to include the least abundant proteins. In addition, proteomics has been complemented by the analysis of posttranslational modifications and techniques for the quantitative comparison of different proteomes. However, the major limitation of proteomic investigations remains the complexity of biological structures and physiological processes, rendering the path of exploration paved with various difficulties and pitfalls. The quantity of data that is acquired with new techniques places new challenges on data processing and analysis. This article provides a brief overview of currently available proteomic techniques and their applications, followed by detailed description of advantages and technical challenges. Some solutions to circumvent technical difficulties are proposed

    Use of expressed sequence tags as an alternative approach for the identification of Taenia solium metacestode excretion/secretion proteins

    Get PDF
    BACKGROUND: Taenia solium taeniasis/cysticercosis is a zoonotic helminth infection mainly found in rural regions of Africa, Asia and Latin America. In endemic areas, diagnosis of cysticercosis largely depends on serology, but these methods have their drawbacks and require improvement. This implies better knowledge of the proteins secreted and excreted by the parasite. In a previous study, we used a custom protein database containing protein sequences from related helminths to identify T. solium metacestode excretion/secretion proteins. An alternative or complementary approach would be to use expressed sequence tags combined with BLAST and protein mapping to supercontigs of Echinococcus granulosus, a closely related cestode. In this study, we evaluate this approach and compare the results to those obtained in the previous study. FINDINGS: We report 297 proteins organized in 106 protein groups based on homology. Additional classification was done using Gene Ontology information on biological process and molecular function. Of the 106 protein groups, 58 groups were newly identified, while 48 groups confirmed previous findings. Blast2GO analysis revealed that the majority of the proteins were involved in catalytic activities and binding. CONCLUSIONS: In this study, we used translated expressed sequence tags combined with BLAST and mapping strategies to both confirm and complement previous research. Our findings are comparable to recent studies on other helminth genera like Echinococcus, Schistosoma and Clonorchis, indicating similarities between helminth excretion/secretion proteomes
    corecore