1,618 research outputs found

    VOICE BIOMETRICS UNDER MISMATCHED NOISE CONDITIONS

    Get PDF
    This thesis describes research into effective voice biometrics (speaker recognition) under mismatched noise conditions. Over the last two decades, this class of biometrics has been the subject of considerable research due to its various applications in such areas as telephone banking, remote access control and surveillance. One of the main challenges associated with the deployment of voice biometrics in practice is that of undesired variations in speech characteristics caused by environmental noise. Such variations can in turn lead to a mismatch between the corresponding test and reference material from the same speaker. This is found to adversely affect the performance of speaker recognition in terms of accuracy. To address the above problem, a novel approach is introduced and investigated. The proposed method is based on minimising the noise mismatch between reference speaker models and the given test utterance, and involves a new form of Test-Normalisation (T-Norm) for further enhancing matching scores under the aforementioned adverse operating conditions. Through experimental investigations, based on the two main classes of speaker recognition (i.e. verification/ open-set identification), it is shown that the proposed approach can significantly improve the performance accuracy under mismatched noise conditions. In order to further improve the recognition accuracy in severe mismatch conditions, an approach to enhancing the above stated method is proposed. This, which involves providing a closer adjustment of the reference speaker models to the noise condition in the test utterance, is shown to considerably increase the accuracy in extreme cases of noisy test data. Moreover, to tackle the computational burden associated with the use of the enhanced approach with open-set identification, an efficient algorithm for its realisation in this context is introduced and evaluated. The thesis presents a detailed description of the research undertaken, describes the experimental investigations and provides a thorough analysis of the outcomes

    Text-Independent Speaker Identification using Statistical Learning

    Get PDF
    The proliferation of voice-activated devices and systems and over-the-phone bank transactions has made our daily affairs much easier in recent times. The ease that these systems offer also call for a need for them to be fail-safe against impersonators. Due to the sensitive information that might be shred on these systems, it is imperative that security be an utmost concern during the development stages. Vital systems like these should incorporate a functionality of discriminating between the actual speaker and impersonators. That functionality is the focus of this thesis. Several methods have been proposed to be used to achieve this system and some success has been recorded so far. However, due to the vital role this system has to play in securing critical information, efforts have been continually made to reduce the probability of error in the systems. Therefore, statistical learning methods or techniques are utilized in this thesis because they have proven to have high accuracy and efficiency in various other applications. The statistical methods used are Gaussian Mixture Models and Support Vector Machines. These methods have become the de facto techniques for designing speaker identification systems. The effectiveness of the support vector machine is dependent on the type of kernel used. Several kernels have been proposed for achieving better results and we also introduce a kernel in this thesis which will serve as an alternative to the already defined ones. Other factors including the number of components used in modeling the Gaussian Mixture Model (GMM) affect the performance of the system and these factors are used in this thesis and exciting results were obtained
    • …
    corecore