1,544 research outputs found

    Transistor-Level Synthesis of Pipeline Analog-to-Digital Converters Using a Design-Space Reduction Algorithm

    Get PDF
    A novel transistor-level synthesis procedure for pipeline ADCs is presented. This procedure is able to directly map high-level converter specifications onto transistor sizes and biasing conditions. It is based on the combination of behavioral models for performance evaluation, optimization routines to minimize the power and area consumption of the circuit solution, and an algorithm to efficiently constraint the converter design space. This algorithm precludes the cost of lengthy bottom-up verifications and speeds up the synthesis task. The approach is herein demonstrated via the design of a 0.13 μm CMOS 10 bits@60 MS/s pipeline ADC with energy consumption per conversion of only 0.54 pJ@1 MHz, making it one of the most energy-efficient 10-bit video-rate pipeline ADCs reported to date. The computational cost of this design is of only 25 min of CPU time, and includes the evaluation of 13 different pipeline architectures potentially feasible for the targeted specifications. The optimum design derived from the synthesis procedure has been fine tuned to support PVT variations, laid out together with other auxiliary blocks, and fabricated. The experimental results show a power consumption of 23 [email protected] V and an effective resolution of 9.47-bit@1 MHz. Bearing in mind that no specific power reduction strategy has been applied; the mentioned results confirm the reliability of the proposed approach.Ministerio de Ciencia e Innovación TEC2009-08447Junta de Andalucía TIC-0281

    A 13-bit, 2.2-MS/s, 55-mW multibit cascade ΣΔ modulator in CMOS 0.7-μm single-poly technology

    Get PDF
    This paper presents a CMOS 0.7-μm ΣΔ modulator IC that achieves 13-bit dynamic range at 2.2 MS/s with an oversampling ratio of 16. It uses fully differential switched-capacitor circuits with a clock frequency of 35.2 MHz, and has a power consumption of 55 mW. Such a low oversampling ratio has been achieved through the combined usage of fourth-order filtering and multibit quantization. To guarantee stable operation for any input signal and/or initial condition, the fourth-order shaping function has been realized using a cascade architecture with three stages; the first stage is a second-order modulator, while the others are first-order modulators - referred to as a 2-1-1mb architecture. The quantizer of the last stage is 3 bits, while the other quantizers are single bit. The modulator architecture and coefficients have been optimized for reduced sensitivity to the errors in the 3-bit quantization process. Specifically, the 3-bit digital-to-analog converter tolerates 2.8% FS nonlinearity without significant degradation of the modulator performance. This makes the use of digital calibration unnecessary, which is a key point for reduced power consumption. We show that, for a given oversampling ratio and in the presence of 0.5% mismatch, the proposed modulator obtains a larger signal-to-noise-plus-distortion ratio than previous multibit cascade architectures. On the other hand, as compared to a 2-1-1single-bit modulator previously designed for a mixed-signal asymmetrical digital subscriber line modem in the same technology, the modulator in this paper obtains one more bit resolution, enhances the operating frequency by a factor of two, and reduces the power consumption by a factor of four.Comisión Interministerial de Ciencia y Tecnología TIC97-0580European Commission ESPRIT 879

    First order sigma-delta modulator of an oversampling ADC design in CMOS using floating gate MOSFETS

    Get PDF
    We report a new architecture for a sigma-delta oversampling analog-to-digital converter (ADC) in which the first order modulator is realized using the floating gate MOSFETs at the input stage of an integrator and the comparator. The first order modulator is designed using an 8 MHz sampling clock frequency and implemented in a standard 1.5µm n-well CMOS process. The decimator is an off-chip sinc-filter and is programmed using the VERILOG and tested with Altera Flex EPF10K70RC240 FPGA board. The ADC gives an 8-bit resolution with a 65 kHz bandwidth

    Comparator Design in Sensors for Environmental Monitoring

    Get PDF
    This paper presents circuit design considerations of comparator in analog-to-digital converters (ADC) applied for a portable, low-cost and high performance nano-sensor chip which can be applied to detect the airborne magnetite pollution nano particulate matter (PM) for environmental monitoring. High-resolution ADC plays a vital important role in high perfor-mance nano-sensor, while high-resolution comparator is a key component in ADC. In this work, some important design issues related to comparators in analog-to-digital converters (ADCs) are discussed, simulation results show that the resolution of the comparator proposed can achieve 5µV , and it is appropriate for high-resolution application

    Continuous-time cascaded ΣΔ modulators for VDSL: A comparative study

    Get PDF
    This paper describes new cascaded continuous-time ΣΔ modulators intended to cope with very high-rate digital subscriber line specifications, i.e 12-bit resolution within a 20-MHz signal bandwidth. These modulators have been synthesized using a new methodology that is based on the direct synthesis of the whole cascaded architecture in the continuous-time domain instead of using a discrete-to-continuous time transformation as has been done in previous approaches. This method allows to place the zeroes/poles of the loop-filter transfer function in an optimal way and to reduce the number of analog components, namely, transconductors and/or amplifiers, resistors, capacitors and digital-to-analog converters. This leads to more efficient topologies in terms of circuitry complexity, power consumption and robustness with respect to circuit non-idealities. A comparison study of the synthesized architectures is done considering their sensitivity to most critical circuit error mechanisms. Time-domain behavioral simulations are shown to validate the presented approach.Ministerio de Educación y Ciencia TEC2004-01752/MI

    Design of a Sigma-Delta ADC in 65nm CMOS Process

    Get PDF
    Analog and digital signals both play a vital role in electrical engineering and the technology of today. As the role of electrical and computer engineers becomes more deeply involved in the development of new technology, an understanding of how these signals are utilized, and what they represent, is a necessity. Due to the inherent limitations involved with analog signals, there is a need for these signals to be accurately and efficiently converted to digital signals for processing. The job of the analog-to-digital converter, or ADC, is to receive this analog input signal (voltage or current) and create a digital representation of it based on a specified number of bits, or resolution. In this paper, the design and testing of a sigma-delta analog-to-digital converter will be presented. An explanation of how each component operates within the system will be discussed and the results of testing each of these components as well as the system as a whole will be provided. It will be seen that from fundamental building blocks such as switched-capacitors, op-amps, and digital logic, a fast and efficient system of converting analog to digital signals can be derived. Sigma-delta converters are an increasingly common architecture of ADC used due to the small number of components needed and the low noise, high resolution conversion offered. Through the process of designing and simulating a very basic sigma-delta converter, the fundamental concepts of integrated circuit design, signal processing, and ADC design will be thoroughly explored

    Carbon footprint of 3D-printed bone tissue engineering scaffolds: an life cycle assessment study

    Get PDF
    The bone tissue engineering scaffolds is one of the methods for repairing bone defects caused by various factors. According to modern tissue engineering technology, three-dimensional (3D) printing technology for bone tissue engineering provides a temporary basis for the creation of biological replacements. Through the generated 3D bone tissue engineering scaffolds from previous studies, the assessment to evaluate the environmental impact has shown less attention in research. Therefore, this paper is aimed to propose the Model of life cycle assessment (LCA) for 3D bone tissue engineering scaffolds of 3D gel-printing technology and presented the analysis technique of LCA from cradle-to-gate for assessing the environmental impacts of carbon footprint. Acrylamide (C3H5NO), citric acid (C6H8O7), N,N-Dimethylaminopropyl acrylamide (C8H16N2O), deionized water (H2O), and 2-Hydroxyethyl acrylate (C5H8O3) was selected as the material resources. Meanwhile, the 3D gel-printing technology was used as the manufacturing processes in the system boundary. The analysis is based on the LCA Model through the application of GaBi software. The environmental impact was assessed in the 3D gel-printing technology and it was obtained that the system shows the environmental impact of global warming potential (GWP). All of the emissions contributed to GWP have been identified such as emissions to air, freshwater, seawater, and industrial soil. The aggregation of GWP result in the stage of manufacturing process for input and output data contributed 47.6% and 32.5% respectively. Hence, the data analysis of the results is expected to use for improving the performance at the material and manufacturing process of the product life cycle

    Design of a Sigma-Delta ADC in 65nm CMOS Process

    Get PDF
    Analog and digital signals both play a vital role in electrical engineering and the technology of today. As the role of electrical and computer engineers becomes more deeply involved in the development of new technology, an understanding of how these signals are utilized, and what they represent, is a necessity. Due to the inherent limitations involved with analog signals, there is a need for these signals to be accurately and efficiently converted to digital signals for processing. The job of the analog-to-digital converter, or ADC, is to receive this analog input signal (voltage or current) and create a digital representation of it based on a specified number of bits, or resolution. In this paper, the design and testing of a sigma-delta analog-to-digital converter will be presented. An explanation of how each component operates within the system will be discussed and the results of testing each of these components as well as the system as a whole will be provided. It will be seen that from fundamental building blocks such as switched-capacitors, op-amps, and digital logic, a fast and efficient system of converting analog to digital signals can be derived. Sigma-delta converters are an increasingly common architecture of ADC used due to the small number of components needed and the low noise, high resolution conversion offered. Through the process of designing and simulating a very basic sigma-delta converter, the fundamental concepts of integrated circuit design, signal processing, and ADC design will be thoroughly explored
    corecore