783 research outputs found

    Privacy-preserving Cross-domain Routing Optimization -- A Cryptographic Approach

    Full text link
    Today's large-scale enterprise networks, data center networks, and wide area networks can be decomposed into multiple administrative or geographical domains. Domains may be owned by different administrative units or organizations. Hence protecting domain information is an important concern. Existing general-purpose Secure Multi-Party Computation (SMPC) methods that preserves privacy for domains are extremely slow for cross-domain routing problems. In this paper we present PYCRO, a cryptographic protocol specifically designed for privacy-preserving cross-domain routing optimization in Software Defined Networking (SDN) environments. PYCRO provides two fundamental routing functions, policy-compliant shortest path computing and bandwidth allocation, while ensuring strong protection for the private information of domains. We rigorously prove the privacy guarantee of our protocol. We have implemented a prototype system that runs PYCRO on servers in a campus network. Experimental results using real ISP network topologies show that PYCRO is very efficient in computation and communication costs

    Will SDN be part of 5G?

    Get PDF
    For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regarding 5G. However, given the monumental task of softwarization of radio access network (RAN) while 5G is just around the corner and some companies have started unveiling their 5G equipment already, the concern is very realistic that we may only see some point solutions involving SDN technology instead of a fully SDN-enabled RAN. This survey paper identifies all important obstacles in the way and looks at the state of the art of the relevant solutions. This survey is different from the previous surveys on SDN-based RAN as it focuses on the salient problems and discusses solutions proposed within and outside SDN literature. Our main focus is on fronthaul, backward compatibility, supposedly disruptive nature of SDN deployment, business cases and monetization of SDN related upgrades, latency of general purpose processors (GPP), and additional security vulnerabilities, softwarization brings along to the RAN. We have also provided a summary of the architectural developments in SDN-based RAN landscape as not all work can be covered under the focused issues. This paper provides a comprehensive survey on the state of the art of SDN-based RAN and clearly points out the gaps in the technology.Comment: 33 pages, 10 figure

    Software Defined Networks based Smart Grid Communication: A Comprehensive Survey

    Get PDF
    The current power grid is no longer a feasible solution due to ever-increasing user demand of electricity, old infrastructure, and reliability issues and thus require transformation to a better grid a.k.a., smart grid (SG). The key features that distinguish SG from the conventional electrical power grid are its capability to perform two-way communication, demand side management, and real time pricing. Despite all these advantages that SG will bring, there are certain issues which are specific to SG communication system. For instance, network management of current SG systems is complex, time consuming, and done manually. Moreover, SG communication (SGC) system is built on different vendor specific devices and protocols. Therefore, the current SG systems are not protocol independent, thus leading to interoperability issue. Software defined network (SDN) has been proposed to monitor and manage the communication networks globally. This article serves as a comprehensive survey on SDN-based SGC. In this article, we first discuss taxonomy of advantages of SDNbased SGC.We then discuss SDN-based SGC architectures, along with case studies. Our article provides an in-depth discussion on routing schemes for SDN-based SGC. We also provide detailed survey of security and privacy schemes applied to SDN-based SGC. We furthermore present challenges, open issues, and future research directions related to SDN-based SGC.Comment: Accepte

    Permissioned Blockchain-Based Security for SDN in IoT Cloud Networks

    Full text link
    The advancement in cloud networks has enabled connectivity of both traditional networked elements and new devices from all walks of life, thereby forming the Internet of Things (IoT). In an IoT setting, improving and scaling network components as well as reducing cost is essential to sustain exponential growth. In this domain, software-defined networking (SDN) is revolutionizing the network infrastructure with a new paradigm. SDN splits the control/routing logic from the data transfer/forwarding. This splitting causes many issues in SDN, such as vulnerabilities of DDoS attacks. Many solutions (including blockchain based) have been proposed to overcome these problems. In this work, we offer a blockchain-based solution that is provided in redundant SDN (load-balanced) to service millions of IoT devices. Blockchain is considered as tamper-proof and impossible to corrupt due to the replication of the ledger and consensus for verification and addition to the ledger. Therefore, it is a perfect fit for SDN in IoT Networks. Blockchain technology provides everyone with a working proof of decentralized trust. The experimental results show gain and efficiency with respect to the accuracy, update process, and bandwidth utilization.Comment: Accepted to International Conference on Advances in the Emerging Computing Technologies (AECT) 202

    Experimental Evaluation of SDN-Controlled, Joint Consolidation of Policies and Virtual Machines

    Get PDF
    Middleboxes (MBs) are ubiquitous in modern data centre (DC) due to their crucial role in implementing network security, management and optimisation. In order to meet network policy's requirement on correct traversal of an ordered sequence of MBs, network administrators rely on static policy based routing or VLAN stitching to steer traffic flows. However, dynamic virtual server migration in virtual environment has greatly challenged such static traffic steering. In this paper, we design and implement Sync, an efficient and synergistic scheme to jointly consolidate network policies and virtual machines (VMs), in a readily deployable Mininet environment. We present the architecture of Sync framework and open source its code. We also extensively evaluate Sync over diverse workload and policies. Our results show that in an emulated DC of 686 servers, 10k VMs, 8k policies, and 100k flows, Sync processes a group of 900 VMs and 10 VMs in 634 seconds and 4 seconds respectively

    Big Data Analysis-Based Secure Cluster Management for Optimized Control Plane in Software-Defined Networks

    Get PDF
    In software-defined networks (SDNs), the abstracted control plane is its symbolic characteristic, whose core component is the software-based controller. The control plane is logically centralized, but the controllers can be physically distributed and composed of multiple nodes. To meet the service management requirements of large-scale network scenarios, the control plane is usually implemented in the form of distributed controller clusters. Cluster management technology monitors all types of events and must maintain a consistent global network status, which usually leads to big data in SDNs. Simultaneously, the cluster security is an open issue because of the programmable and dynamic features of SDNs. To address the above challenges, this paper proposes a big data analysis-based secure cluster management architecture for the optimized control plane. A security authentication scheme is proposed for cluster management. Moreover, we propose an ant colony optimization approach that enables big data analysis scheme and the implementation system that optimizes the control plane. Simulations and comparisons show the feasibility and efficiency of the proposed scheme. The proposed scheme is significant in improving the security and efficiency SDN control plane

    Hybrid SDN Evolution: A Comprehensive Survey of the State-of-the-Art

    Full text link
    Software-Defined Networking (SDN) is an evolutionary networking paradigm which has been adopted by large network and cloud providers, among which are Tech Giants. However, embracing a new and futuristic paradigm as an alternative to well-established and mature legacy networking paradigm requires a lot of time along with considerable financial resources and technical expertise. Consequently, many enterprises can not afford it. A compromise solution then is a hybrid networking environment (a.k.a. Hybrid SDN (hSDN)) in which SDN functionalities are leveraged while existing traditional network infrastructures are acknowledged. Recently, hSDN has been seen as a viable networking solution for a diverse range of businesses and organizations. Accordingly, the body of literature on hSDN research has improved remarkably. On this account, we present this paper as a comprehensive state-of-the-art survey which expands upon hSDN from many different perspectives
    corecore