3,611 research outputs found

    An Integrated Multi-Time-Scale Modeling for Solar Irradiance Forecasting Using Deep Learning

    Full text link
    For short-term solar irradiance forecasting, the traditional point forecasting methods are rendered less useful due to the non-stationary characteristic of solar power. The amount of operating reserves required to maintain reliable operation of the electric grid rises due to the variability of solar energy. The higher the uncertainty in the generation, the greater the operating-reserve requirements, which translates to an increased cost of operation. In this research work, we propose a unified architecture for multi-time-scale predictions for intra-day solar irradiance forecasting using recurrent neural networks (RNN) and long-short-term memory networks (LSTMs). This paper also lays out a framework for extending this modeling approach to intra-hour forecasting horizons thus, making it a multi-time-horizon forecasting approach, capable of predicting intra-hour as well as intra-day solar irradiance. We develop an end-to-end pipeline to effectuate the proposed architecture. The performance of the prediction model is tested and validated by the methodical implementation. The robustness of the approach is demonstrated with case studies conducted for geographically scattered sites across the United States. The predictions demonstrate that our proposed unified architecture-based approach is effective for multi-time-scale solar forecasts and achieves a lower root-mean-square prediction error when benchmarked against the best-performing methods documented in the literature that use separate models for each time-scale during the day. Our proposed method results in a 71.5% reduction in the mean RMSE averaged across all the test sites compared to the ML-based best-performing method reported in the literature. Additionally, the proposed method enables multi-time-horizon forecasts with real-time inputs, which have a significant potential for practical industry applications in the evolving grid.Comment: 19 pages, 12 figures, 3 tables, under review for journal submissio

    Modeling Long- and Short-Term Temporal Patterns with Deep Neural Networks

    Full text link
    Multivariate time series forecasting is an important machine learning problem across many domains, including predictions of solar plant energy output, electricity consumption, and traffic jam situation. Temporal data arise in these real-world applications often involves a mixture of long-term and short-term patterns, for which traditional approaches such as Autoregressive models and Gaussian Process may fail. In this paper, we proposed a novel deep learning framework, namely Long- and Short-term Time-series network (LSTNet), to address this open challenge. LSTNet uses the Convolution Neural Network (CNN) and the Recurrent Neural Network (RNN) to extract short-term local dependency patterns among variables and to discover long-term patterns for time series trends. Furthermore, we leverage traditional autoregressive model to tackle the scale insensitive problem of the neural network model. In our evaluation on real-world data with complex mixtures of repetitive patterns, LSTNet achieved significant performance improvements over that of several state-of-the-art baseline methods. All the data and experiment codes are available online.Comment: Accepted by SIGIR 201

    Multi-objective particle swarm optimization algorithm for multi-step electric load forecasting

    Get PDF
    As energy saving becomes more and more popular, electric load forecasting has played a more and more crucial role in power management systems in the last few years. Because of the real-time characteristic of electricity and the uncertainty change of an electric load, realizing the accuracy and stability of electric load forecasting is a challenging task. Many predecessors have obtained the expected forecasting results by various methods. Considering the stability of time series prediction, a novel combined electric load forecasting, which based on extreme learning machine (ELM), recurrent neural network (RNN), and support vector machines (SVMs), was proposed. The combined model first uses three neural networks to forecast the electric load data separately considering that the single model has inevitable disadvantages, the combined model applies the multi-objective particle swarm optimization algorithm (MOPSO) to optimize the parameters. In order to verify the capacity of the proposed combined model, 1-step, 2-step, and 3-step are used to forecast the electric load data of three Australian states, including New South Wales, Queensland, and Victoria. The experimental results intuitively indicate that for these three datasets, the combined model outperforms all three individual models used for comparison, which demonstrates its superior capability in terms of accuracy and stability
    • …
    corecore