739 research outputs found

    Recurrent Neural Network Architectures Toward Intrusion Detection

    Get PDF
    Recurrent Neural Networks (RNN) show a remarkable result in sequence learning, particularly in architectures with gated unit structures such as Long Short-term Memory (LSTM). In recent years, several permutations of LSTM architecture have been proposed mainly to overcome the computational complexity of LSTM. In this dissertation, a novel study is presented that will empirically investigate and evaluate LSTM architecture variants such as Gated Recurrent Unit (GRU), Bi-Directional LSTM, and Dynamic-RNN for LSTM and GRU specifically on detecting network intrusions. The investigation is designed to identify the learning time required for each architecture algorithm and to measure the intrusion prediction accuracy. RNN was evaluated on the DARPA/KDD Cup’99 intrusion detection dataset for each architecture. Feature selection mechanisms were also implemented to help in identifying and removing nonessential variables from data that do not affect the accuracy of the prediction models, in this case Principle Component Analysis (PCA) and the RandomForest (RF) algorithm. The results showed that RF captured more significant features over PCA when the accuracy for RF 97.86% for LSTM and 96.59% for GRU, were PCA 64.34% for LSTM and 67.97% for GRU. In terms of RNN architectures, prediction accuracy of each variant exhibited improvement at specific parameters, yet with a large dataset and a suitable time training, the standard vanilla LSTM tended to lead among all other RNN architectures which scored 99.48%. Although Dynamic RNN’s offered better performance with accuracy, Dynamic-RNN GRU scored 99.34%, however they tended to take a longer time to be trained with high training cycles, Dynamic-RNN LSTM needs 25284.03 seconds at 1000 training cycle. GRU architecture had one variant introduced to reduce LSTM complexity, which developed with fewer parameters resulting in a faster-trained model compared to LSTM needs 1903.09 seconds when LSTM required 2354.93 seconds for the same training cycle. It also showed equivalent performance with respect to the parameters such as hidden layers and time-step. BLSTM offered impressive training time as 190 seconds at 100 training cycle, though the accuracy was below that of the other RNN architectures which didn’t exceed 90%

    Real-time Intrusion Detection using Multidimensional Sequence-to-Sequence Machine Learning and Adaptive Stream Processing

    Get PDF
    A network intrusion is any unauthorized activity on a computer network. There are host-based and network-based Intrusion Detection Systems (IDS\u27s), of which there are each signature-based and anomaly-based detection methods. An anomalous network behavior can be defined as an intentional violation of the expected sequence of packets. In a real-time network-based IDS, incoming packets are treated as a stream of data. A stream processor takes any stream of data or events and extracts interesting patterns on the fly. This representation allows applying statistical anomaly detection using sequence prediction algorithms as well as using a stream processor to perform signature-based intrusion detection and sequence extraction from a stream of packets. In this thesis, a Multidimensional Sequence to Multidimensional Sequence (MSeq2MSeq) encoder-decoder model is proposed to predict sequences of packets and an adaptive and functionally auto-scaling stream processor: Wisdom is proposed to process streams of packets. The proposed MSeq2MSeq model trained on legitimate traffic is able to detect Neptune Denial of Service (DoS) attacks, and Port Scan probes with 100% detection rate using the DARPA 1999 dataset. A hybrid algorithm using Particle Swarm Optimization (PSO) and Bisection algorithms was developed to optimize Complex Event Processing (CEP) rules in Wisdom . Adaptive CEP rules optimized by the above algorithm was able to detect FTP Brute Force attack, Slow Header DoS attack, and Port Scan probe with 100% detection rate while processing over 2.5 million events per second. An adaptive and functionally auto-scaling IDS was built using the MSeq2MSeq model and Wisdom stream processor to detect and prevent attacks based on anomalies and signature in real-time. The proposed IDS adapts itself to obtain best results without human intervention and utilizes available system resources in functionally auto-scaling deployment. Results show that the proposed IDS detects FTP Brute Force attack, Slow Header DoS attack, HTTP Unbearable Load King (HULK) DoS attack, SQL Injection attack, Web Brute Force attack, Cross-site scripting attack, Ares Botnet attack, and Port Scan probe with a 100% detection rate in a real-time environment simulated from the CICIDS 2017 dataset

    Deep Learning for Network Traffic Monitoring and Analysis (NTMA): A Survey

    Get PDF
    Modern communication systems and networks, e.g., Internet of Things (IoT) and cellular networks, generate a massive and heterogeneous amount of traffic data. In such networks, the traditional network management techniques for monitoring and data analytics face some challenges and issues, e.g., accuracy, and effective processing of big data in a real-time fashion. Moreover, the pattern of network traffic, especially in cellular networks, shows very complex behavior because of various factors, such as device mobility and network heterogeneity. Deep learning has been efficiently employed to facilitate analytics and knowledge discovery in big data systems to recognize hidden and complex patterns. Motivated by these successes, researchers in the field of networking apply deep learning models for Network Traffic Monitoring and Analysis (NTMA) applications, e.g., traffic classification and prediction. This paper provides a comprehensive review on applications of deep learning in NTMA. We first provide fundamental background relevant to our review. Then, we give an insight into the confluence of deep learning and NTMA, and review deep learning techniques proposed for NTMA applications. Finally, we discuss key challenges, open issues, and future research directions for using deep learning in NTMA applications.publishedVersio

    Using deep learning to classify community network traffic

    Get PDF
    Traffic classification is an important aspect of network management. This aspect improves the quality of service, traffic engineering, bandwidth management and internet security. Traffic classification methods continue to evolve due to the ever-changing dynamics of modern computer networks and the traffic they generate. Numerous studies on traffic classification make use of the Machine Learning (ML) and single Deep Learning (DL) models. ML classification models are effective to a certain degree. However, studies have shown they record low prediction and accuracy scores. In contrast, the proliferation of various deep learning techniques has recorded higher accuracy in traffic classification. The Deep Learning models have been successful in identifying encrypted network traffic. Furthermore, DL learns new features without the need to do much feature engineering compared to ML or Traditional methods. Traditional methods are inefficient in meeting the demands of ever-changing requirements of networks and network applications. Traditional methods are unfeasible and costly to maintain as they need constant updates to maintain their accuracy. In this study, we carry out a comparative analysis by adopting an ML model (Support Vector Machine) against the DL Models (Convolutional Neural Networks (CNN), Gated Recurrent Unit (GRU) and a hybrid model: CNNGRU to classify encrypted internet traffic collected from a community network. In this study, we performed a comparative analysis by adopting an ML model (Support vector machine). Machine against DL models (Convolutional Neural networks (CNN), Gated Recurrent Unit (GRU) and a hybrid model: CNNGRU) and to classify encrypted internet traffic that was collected from a community network. The results show that DL models tend to generalise better with the dataset in comparison to ML. Among the deep Learning models, the hybrid model outperformed all the other models in terms of accuracy score. However, the model that had the best accuracy rate was not necessarily the one that took the shortest time when it came to prediction speed considering that it was more complex. Support vector machines outperformed the deep learning models in terms of prediction speed

    Graph-Based Multi-Label Classification for WiFi Network Traffic Analysis

    Get PDF
    Network traffic analysis, and specifically anomaly and attack detection, call for sophisticated tools relying on a large number of features. Mathematical modeling is extremely difficult, given the ample variety of traffic patterns and the subtle and varied ways that malicious activity can be carried out in a network. We address this problem by exploiting data-driven modeling and computational intelligence techniques. Sequences of packets captured on the communication medium are considered, along with multi-label metadata. Graph-based modeling of the data are introduced, thus resorting to the powerful GRALG approach based on feature information granulation, identification of a representative alphabet, embedding and genetic optimization. The obtained classifier is evaluated both under accuracy and complexity for two different supervised problems and compared with state-of-the-art algorithms. We show that the proposed preprocessing strategy is able to describe higher level relations between data instances in the input domain, thus allowing the algorithms to suitably reconstruct the structure of the input domain itself. Furthermore, the considered Granular Computing approach is able to extract knowledge on multiple semantic levels, thus effectively describing anomalies as subgraphs-based symbols of the whole network graph, in a specific time interval. Interesting performances can thus be achieved in identifying network traffic patterns, in spite of the complexity of the considered traffic classes

    Network Threat Detection Using Machine/Deep Learning in SDN-Based Platforms: A Comprehensive Analysis of State-of-the-Art Solutions, Discussion, Challenges, and Future Research Direction

    Get PDF
    A revolution in network technology has been ushered in by software defined networking (SDN), which makes it possible to control the network from a central location and provides an overview of the network’s security. Despite this, SDN has a single point of failure that increases the risk of potential threats. Network intrusion detection systems (NIDS) prevent intrusions into a network and preserve the network’s integrity, availability, and confidentiality. Much work has been done on NIDS but there are still improvements needed in reducing false alarms and increasing threat detection accuracy. Recently advanced approaches such as deep learning (DL) and machine learning (ML) have been implemented in SDN-based NIDS to overcome the security issues within a network. In the first part of this survey paper, we offer an introduction to the NIDS theory, as well as recent research that has been conducted on the topic. After that, we conduct a thorough analysis of the most recent ML- and DL-based NIDS approaches to ensure reliable identification of potential security risks. Finally, we focus on the opportunities and difficulties that lie ahead for future research on SDN-based ML and DL for NIDS.publishedVersio
    • …
    corecore