494 research outputs found

    Comparison of Ray Tracing and Channel-Sounder Measurements for Vehicular Communications

    Get PDF
    This paper presents the results of an accuracy study of a deterministic channel model for vehicle-to-vehicle (V2V) communications. Channel simulations obtained from the ray-tracing model developed by TU Braunschweig are compared to data gathered during the DRIVEWAY V2V channel measurement campaign at 5.6 GHz in the city of Lund in summer 2009. The analysis focuses on PDP and channel gains in an urban four-way intersection scenario. Despite of some implementation-based limitations of the ray-tracing model, a very good agreement between simulation and measurement results is achieved. Most relevant power contributions arising from multiple-bounce specular reflections as well as single-bounce non-specular reflections are captured by the deterministic model. We also discuss the question to what extent roadside obstacles like traffic signs, parked cars or lamp posts have to be considered when characterizing the V2V channel

    Measurement Based Channel Characterization and Modeling for Vehicle-to-Vehicle Communications

    Get PDF
    Vehicle-to-Vehicle (V2V) communication is a challenging but fast growing technology that has potential to enhance traffic safety and efficiency. It can also provide environmental benefits in terms of reduced fuel consumption. The effectiveness and reliability of these applications highly depends on the quality of the V2V communication link, which rely upon the properties of the propagation channel. Therefore, understanding the properties of the propagation channel becomes extremely important. This thesis aims to fill some gaps of knowledge in V2V channel research by addressing four different topics. The first topic is channel characterization of some important safety critical scenarios (papers I and II). Second, is the accuracy or validation study of existing channel models for these safety critical scenarios (papers III and IV). Third, is about channel modeling (paper V) and, the fourth topic is the impact of antenna placement on vehicles and the possible diversity gains. This thesis consists of an introduction and six papers: Paper I presents a double directional analysis of vehicular channels based on channel measurement data. Using SAGE, a high-resolution algorithm for parameter estimation, we estimate channel parameters to identify underlying propagation mechanisms. It is found that, single-bounce reflections from static objects are dominating propagation mechanisms in the absence of line-of-sight (LOS). Directional spread is observed to be high, which encourages the use of diversity-based methods. Paper II presents results for V2V channel characterization based on channel measurements conducted for merging lanes on highway, and four-way street intersection scenarios. It is found that the merging lane scenario has the worst propagation condition due to lack of scatterers. Signal reception is possible only with the present LOS component given that the antenna has a good gain in the direction of LOS. Thus designing an antenna that has an omni-directional gain, or using multiple antennas that radiate towards different directions become more important for such safety critical scenarios. Paper III presents the results of an accuracy study of a deterministic ray tracing channel model for vehicle-to-vehicle (V2V) communication, that is compared against channel measurement data. It is found that the results from measurement and simulation show a good agreement especially in LOS situations where as in NLOS situations the simulations are accurate as far as existing physical phenomena of wave propagation are captured by the implemented algorithm. Paper IV presents the results of a validation study of a stochastic NLOS pathloss and fading model named VirtualSource11p for V2V communication in urban street intersections. The reference model is validated with the help of independent channel measurement data. It is found that the model is flexible and fits well to most of the measurements with a few exceptions, and we propose minor modifications to the model for increased accuracy. Paper V presents a shadow fading model targeting system simulations based on channel measurements. The model parameters are extracted from measurement data, which is separated into three categories; line-of-sight (LOS), LOS obstructed by vehicles (OLOS), and LOS blocked by buildings (NLOS), with the help of video information recorded during the measurements. It is found that vehicles obstructing the LOS induce an additional attenuation in the received signal power. The results from system level vehicular ad hoc network (VANET) simulations are also presented, showing that the LOS obstruction affects the packet reception probability and this can not be ignored. Paper VI investigates the impact of antenna placement based on channel measurements performed with four omni-directional antennas mounted on the roof, bumper, windscreen and left-side mirror of the transmitter and receiver cars. We use diversity combining methods to evaluate the performance differences for all possible single-input single-output (SIMO), multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) link combinations. This investigation suggests that a pair of antennas with complementary properties, e.g., a roof mounted antenna together with a bumper antenna is a good solution for obtaining the best reception performance, in most of the propagation environments. In summary, this thesis describes the channel behavior for safety-critical scenarios by statistical means and models it so that the system performance can be assessed in a realistic manner. In addition to that the influence of different antenna arrangements has also been studied to exploit the spatial diversity and to mitigate the shadowing effects. The presented work can thus enable more efficient design of future V2V communication systems

    State-of-the-art assessment of 5G mmWave communications

    Get PDF
    Deliverable D2.1 del proyecto 5GWirelessMain objective of the European 5Gwireless project, which is part of the H2020 Marie Slodowska- Curie ITN (Innovative Training Networks) program resides in the training and involvement of young researchers in the elaboration of future mobile communication networks, focusing on innovative wireless technologies, heterogeneous network architectures, new topologies (including ultra-dense deployments), and appropriate tools. The present Document D2.1 is the first deliverable of Work- Package 2 (WP2) that is specifically devoted to the modeling of the millimeter-wave (mmWave) propagation channels, and development of appropriate mmWave beamforming and signal processing techniques. Deliver D2.1 gives a state-of-the-art on the mmWave channel measurement, characterization and modeling; existing antenna array technologies, channel estimation and precoding algorithms; proposed deployment and networking techniques; some performance studies; as well as a review on the evaluation and analysis toolsPostprint (published version

    Channel Sounding for the Masses: Low Complexity GNU 802.11b Channel Impulse Response Estimation

    Full text link
    New techniques in cross-layer wireless networks are building demand for ubiquitous channel sounding, that is, the capability to measure channel impulse response (CIR) with any standard wireless network and node. Towards that goal, we present a software-defined IEEE 802.11b receiver and CIR estimation system with little additional computational complexity compared to 802.11b reception alone. The system implementation, using the universal software radio peripheral (USRP) and GNU Radio, is described and compared to previous work. By overcoming computational limitations and performing direct-sequence spread-spectrum (DS-SS) matched filtering on the USRP, we enable high-quality yet inexpensive CIR estimation. We validate the channel sounder and present a drive test campaign which measures hundreds of channels between WiFi access points and an in-vehicle receiver in urban and suburban areas

    Development of wideband radio channel measurement and modeling techniques for future radio systems

    Get PDF
    This thesis discusses the development of micro- and millimeterwave wideband radio channel measurement and modeling techniques for future radio networks. Characterization of the radio channel is needed for radio system, wireless network, and antenna design. A radio channel measurement system was designed for 2.154, 5.3 GHz and 60 GHz center frequencies, and completed at the two lower frequencies. The sounder uses a pseudonoise code in the transmitter. In the receiver, first a sliding correlator, and later direct digital sampling, where the impulse response is detected by digital post processing, were realized. Certain implementation questions, like link budget, effects of phase noise on impulse response and direction of arrival estimation, and achievable performance using the designed concept, are discussed. Measurement campaigns included in this thesis were realized at 5.3 GHz frequency in micro- and picocells. A comprehensive measurement campaign performed inside different buildings was thoroughly analyzed. Propagation mechanisms were studied and empirical models for both large scale fading and multipath propagation were developed. Propagation through walls, diffraction through doorways, and propagation paths outside the building were observed. Pathloss in LOS was lower than the free space pathloss, due to wave guiding effects. In NLOS situation difference in the pathloss models in different buildings was significant. Behavior of the spatial diversity was estimated on the basis of spatial correlation functions extracted from the measurement data; an antenna separation of a fraction of a wavelength gives sufficient de-correlation for significant diversity gain in indoor environments at 5.3 GHz in NLOS.reviewe

    73 GHz Wideband Millimeter-Wave Foliage and Ground Reflection Measurements and Models

    Full text link
    This paper presents 73 GHz wideband outdoor foliage and ground reflection measurements. Propagation measurements were made with a 400 Megachip-per-second sliding correlator channel sounder, with rotatable 27 dBi (7 degrees half- power beamwidth) horn antennas at both the transmitter and receiver, to study foliage-induced scattering and de-polarization effects, to assist in developing future wireless systems that will use adaptive array antennas. Signal attenuation through foliage was measured to be 0.4 dB/m for both co- and cross-polarized antenna configurations. Measured ground reflection coefficients for dirt and gravel ranged from 0.02 to 0.34, for incident angles ranging from 60 degrees to 81 degrees (with respect to the normal incidence of the surface). These data are useful for link budget design and site-specific (ray-tracing) models for future millimeter-wave communication systems.Comment: 6 pages, 4 figures, 2015 IEEE International Conference on Communications (ICC), ICC Workshop

    Terahertz Wireless Channels: A Holistic Survey on Measurement, Modeling, and Analysis

    Full text link
    Terahertz (0.1-10 THz) communications are envisioned as a key technology for sixth generation (6G) wireless systems. The study of underlying THz wireless propagation channels provides the foundations for the development of reliable THz communication systems and their applications. This article provides a comprehensive overview of the study of THz wireless channels. First, the three most popular THz channel measurement methodologies, namely, frequency-domain channel measurement based on a vector network analyzer (VNA), time-domain channel measurement based on sliding correlation, and time-domain channel measurement based on THz pulses from time-domain spectroscopy (THz-TDS), are introduced and compared. Current channel measurement systems and measurement campaigns are reviewed. Then, existing channel modeling methodologies are categorized into deterministic, stochastic, and hybrid approaches. State-of-the-art THz channel models are analyzed, and the channel simulators that are based on them are introduced. Next, an in-depth review of channel characteristics in the THz band is presented. Finally, open problems and future research directions for research studies on THz wireless channels for 6G are elaborated.Comment: to appear in IEEE Communications Surveys and Tutorial
    corecore