811 research outputs found

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    Terahertz Wireless Channels: A Holistic Survey on Measurement, Modeling, and Analysis

    Full text link
    Terahertz (0.1-10 THz) communications are envisioned as a key technology for sixth generation (6G) wireless systems. The study of underlying THz wireless propagation channels provides the foundations for the development of reliable THz communication systems and their applications. This article provides a comprehensive overview of the study of THz wireless channels. First, the three most popular THz channel measurement methodologies, namely, frequency-domain channel measurement based on a vector network analyzer (VNA), time-domain channel measurement based on sliding correlation, and time-domain channel measurement based on THz pulses from time-domain spectroscopy (THz-TDS), are introduced and compared. Current channel measurement systems and measurement campaigns are reviewed. Then, existing channel modeling methodologies are categorized into deterministic, stochastic, and hybrid approaches. State-of-the-art THz channel models are analyzed, and the channel simulators that are based on them are introduced. Next, an in-depth review of channel characteristics in the THz band is presented. Finally, open problems and future research directions for research studies on THz wireless channels for 6G are elaborated.Comment: to appear in IEEE Communications Surveys and Tutorial

    Analysis of Simulated and Measured Indoor Channels for mm-Wave Beamforming Applications

    Get PDF
    Ray tracing- (RT-) assisted beamforming, where beams are directly steered to dominant paths tracked by ray tracing simulations, is a promising beamforming strategy, since it avoids the time-consuming exhaustive beam searching adopted in conventional beam steering strategies. The performance of RT-assisted beamforming depends directly on how accurate the spatial profiles of the radio environment can be predicted by the RT simulation. In this paper, we investigate how ray tracing-assisted beamforming performs in both poorly furnished and richly furnished indoor environments. Single-user beamforming performance was investigated using both single beam and multiple beams, with two different power allocation schemes applied to multibeamforming. Channel measurements were performed at 28–30 GHz using a vector network analyzer equipped with a biconical antenna as the transmit antenna and a rotated horn antenna as the receive antenna. 3D ray tracing simulations were carried out in the same replicated propagation environments. Based on measurement and ray tracing simulation data, it is shown that RT-assisted beamforming performs well both for single and multibeamforming in these two representative indoor propagation environments

    State-of-the-art assessment of 5G mmWave communications

    Get PDF
    Deliverable D2.1 del proyecto 5GWirelessMain objective of the European 5Gwireless project, which is part of the H2020 Marie Slodowska- Curie ITN (Innovative Training Networks) program resides in the training and involvement of young researchers in the elaboration of future mobile communication networks, focusing on innovative wireless technologies, heterogeneous network architectures, new topologies (including ultra-dense deployments), and appropriate tools. The present Document D2.1 is the first deliverable of Work- Package 2 (WP2) that is specifically devoted to the modeling of the millimeter-wave (mmWave) propagation channels, and development of appropriate mmWave beamforming and signal processing techniques. Deliver D2.1 gives a state-of-the-art on the mmWave channel measurement, characterization and modeling; existing antenna array technologies, channel estimation and precoding algorithms; proposed deployment and networking techniques; some performance studies; as well as a review on the evaluation and analysis toolsPostprint (published version

    A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles

    Full text link
    In recent years, there has been a dramatic increase in the use of unmanned aerial vehicles (UAVs), particularly for small UAVs, due to their affordable prices, ease of availability, and ease of operability. Existing and future applications of UAVs include remote surveillance and monitoring, relief operations, package delivery, and communication backhaul infrastructure. Additionally, UAVs are envisioned as an important component of 5G wireless technology and beyond. The unique application scenarios for UAVs necessitate accurate air-to-ground (AG) propagation channel models for designing and evaluating UAV communication links for control/non-payload as well as payload data transmissions. These AG propagation models have not been investigated in detail when compared to terrestrial propagation models. In this paper, a comprehensive survey is provided on available AG channel measurement campaigns, large and small scale fading channel models, their limitations, and future research directions for UAV communication scenarios

    Empirical multi-band characterization of propagation with modelling aspects for communictions

    Get PDF
    Diese Arbeit prĂ€sentiert eine empirische Untersuchung der Wellenausbreitung fĂŒr drahtlose Kommunikation im Millimeterwellen- und sub-THz-Band, wobei als Referenz das bereits bekannte und untersuchte sub-6-GHz-Band verwendet wird. Die großen verfĂŒgbaren Bandbreiten in diesen hohen FrequenzbĂ€ndern erlauben die Verwendung hoher instantaner Bandbreiten zur ErfĂŒllung der wesentlichen Anforderungen zukĂŒnftiger Mobilfunktechnologien (5G, “5G and beyond” und 6G). Aufgrund zunehmender Pfad- und Eindringverluste bei zunehmender TrĂ€gerfrequenz ist die resultierende Abdeckung dabei jedoch stark reduziert. Die entstehenden Pfadverluste können durch die Verwendung hochdirektiver Funkschnittstellen kompensiert werden, wodurch die resultierende Auflösung im Winkelbereich erhöht wird und die Notwendigkeit einer rĂ€umlichen Kenntnis der Systeme mit sich bringt: Woher kommt das Signal? DarĂŒber hinaus erhöhen grĂ¶ĂŸere Anwendungsbandbreiten die Auflösung im Zeitbereich, reduzieren das small-scale Fading und ermöglichen die Untersuchung innerhalb von Clustern von Mehrwegekomponenten. Daraus ergibt sich fĂŒr Kommunikationssysteme ein vorhersagbareres Bild im Winkel-, Zeit- und Polarisationsbereich, welches Eigenschaften sind, die in Kanalmodellen fĂŒr diese Frequenzen widergespiegelt werden mĂŒssen. Aus diesem Grund wurde in der vorliegenden Arbeit eine umfassende Charakterisierung der Wellenausbreitung durch simultane Multibandmessungen in den sub-6 GHz-, Millimeterwellen- und sub-THz-BĂ€ndern vorgestellt. Zu Beginn wurde die Eignung des simultanen Multiband-Messverfahrens zur Charakterisierung der Ausbreitung von Grenzwert-Leistungsprofilen und large-scale Parametern bewertet. Anschließend wurden wichtige Wellenausbreitungsaspekte fĂŒr die Ein- und Multibandkanalmodellierung innerhalb mehrerer SĂ€ulen der 5G-Technologie identifiziert und Erweiterungen zu verbreiteten rĂ€umlichen Kanalmodellen eingefĂŒhrt und bewertet, welche die oben genannten Systemaspekte abdecken.This thesis presents an empirical characterization of propagation for wireless communications at mm-waves and sub-THz, taking as a reference the already well known and studied sub-6 GHz band. The large blocks of free spectrum available at these high frequency bands makes them particularly suitable to provide the necessary instantaneous bandwidths to meet the requirements of future wireless technologies (5G, 5G and beyond, and 6G). However, isotropic path-loss and penetration-loss are larger with increasing carrier frequency, hence, coverage is severely reduced. Path-loss can be compensated with the utilization of highly directive radio-interfaces, which increases the resolution in the angular domain. Nonetheless, this emphasizes the need of spatial awareness of systems, making more relevant the question “where does the signal come from?” In addition, larger application bandwidths increase the resolution in the time domain, reducing small-scale fading and allowing to observe inside of clusters of multi-path components (MPCs). Consequently, communication systems have a more deterministic picture of the environment in the angular, time, and polarization domain, characteristics that need to be reflected in channel models for these frequencies. Therefore, in the present work we introduce an extensive characterization of propagation by intensive simultaneous multi-band measurements in the sub-6 GHz, mm-waves, and sub-THz bands. Firstly, the suitability of the simultaneous multi-band measurement procedure to characterize propagation from marginal power profiles and large-scale parameters (LSPs) has been evaluated. Then, key propagation aspects for single and multi-band channel modelling in several verticals of 5G have been identified, and extensions to popular spatial channel models (SCMs) covering the aforementioned system aspects have been introduced and evaluated

    Out-of-Band Information Aided mmWave/THz Beam Search: A Spatial Channel Similarity Perspective

    Get PDF
    The transition to higher frequency bands, e.g., millimeter-wave (mmWave) and terahertz (THz), will be capitalized on the long term for future wireless communications. One of challenges relates to rapid establishment of a mmWave/THz link with low beam training overhead due to highly directional transmission. A promising solution is to take advantage of the coexistence of sub-6 GHz, mmWave, and THz networks and to use out-of-band spatial information for enabling fast beam search. The success depends on the spatial similarity of radio channels across different frequencies. In this article we promote a feasibility study of low-frequency spatial information assisted high-frequency beam search from a radio channel point of view. We develop multi-band channel similarity measure of desired beam directions extracted from radio channels, which are obtained by filtering propagation paths by different beampatterns at different frequencies. Measurement- and ray-tracing-based evaluations across multiple frequencies and environments are performed, which prove the usability of out-of-band information aided beam search strategy in line-of-sight (LOS) dominated scenario and even in non-LOS scenario. Finally, we discuss the challenges associated with exploiting spatial channel similarity
    • 

    corecore