2,819 research outputs found

    Latitude, longitude, and beyond:mining mobile objects' behavior

    Get PDF
    Rapid advancements in Micro-Electro-Mechanical Systems (MEMS), and wireless communications, have resulted in a surge in data generation. Mobility data is one of the various forms of data, which are ubiquitously collected by different location sensing devices. Extensive knowledge about the behavior of humans and wildlife is buried in raw mobility data. This knowledge can be used for realizing numerous viable applications ranging from wildlife movement analysis, to various location-based recommendation systems, urban planning, and disaster relief. With respect to what mentioned above, in this thesis, we mainly focus on providing data analytics for understanding the behavior and interaction of mobile entities (humans and animals). To this end, the main research question to be addressed is: How can behaviors and interactions of mobile entities be determined from mobility data acquired by (mobile) wireless sensor nodes in an accurate and efficient manner? To answer the above-mentioned question, both application requirements and technological constraints are considered in this thesis. On the one hand, applications requirements call for accurate data analytics to uncover hidden information about individual behavior and social interaction of mobile entities, and to deal with the uncertainties in mobility data. Technological constraints, on the other hand, require these data analytics to be efficient in terms of their energy consumption and to have low memory footprint, and processing complexity

    Enhancement of the Sensory Capabilities of Mobile Robots through Artificial Olfaction

    Get PDF
    La presente tesis abarca varios aspectos del olfato artificial u olfato robótico, la capacidad de percibir información sobre la composición del aire que rodea a un sistema automático. En primer lugar, se desarrolla una nariz electrónica, un instrumento que combina sensores de gas de bajas prestaciones con un algoritmo de clasificación para medir e identificar gases. Aunque esta tecnología ya existía previamente, se aplica un nuevo enfoque que busca reducir las dimensiones y consumo para poder instalarlas en robots móviles, a la vez que se aumenta el número de gases detectables mediante un diseño modular. Posteriormente, se estudia la estrategia óptima para encontrar fugas de gas con un robot equipado con este tipo de narices electrónicas. Para ello se llevan a cabos varios experimentos basados en teleoperación para entender como afectan los sensores del robot al éxito de la tarea, de lo cual se deriva finalmente un algoritmo para generar con robots autónomos mapas de gas de un entorno dado, el cual se inspira en el comportamiento humano, a saber, maximizar la información conocida sobre el entorno. La principal virtud de este método, además de realizar una exploración óptima del entorno, es su capacidad para funcionar en entornos muy complejos y sujetos a corrientes de vientos mediante un nuevo método que también se presenta en esta tesis. Finalmente, se presentan dos casos de aplicación en los que se identifica de forma automática con una nariz electrónica la calidad subjetiva del aire en entornos urbanos

    Cooperative strategies for the detection and localization of odorants with robots and artificial noses

    Full text link
    En este trabajo de investigación se aborda el diseño de una plataforma robótica orientada a la implementación de estrategias de búsqueda cooperativa bioinspiradas. En particular, tanto el proceso de diseño de la parte electrónica como hardware se han enfocado hacia la validación en entornos reales de algoritmos capaces de afrontar problemas de búsqueda con incertidumbre, como lo es la búsqueda de fuentes de olor que presentan variación espacial y temporal. Este tipo de problemas pueden ser resueltos de forma más eficiente con el empleo de enjambres con una cantidad razonable de robots, y por tanto la plataforma ha sido desarrollada utilizando componentes de bajo coste. Esto ha sido posible por la combinación de elementos estandarizados -como la placa controladora Arduino y otros sensores integrados- con piezas que pueden ser fabricadas mediante una impresora 3D atendiendo a la filosofía del hardware libre (open-source). Entre los requisitos de diseño se encuentran además la eficiencia energética -para maximizar el tiempo de funcionamiento de los robots-, su capacidad de posicionamiento en el entorno de búsqueda, y la integración multisensorial -con la inclusión de una nariz electrónica, sensores de luminosidad, distancia, humedad y temperatura, así como una brújula digital-. También se aborda el uso de una estrategia de comunicación adecuada basada en ZigBee. El sistema desarrollado, denominado GNBot, se ha validado tanto en los aspectos de eficiencia energética como en sus capacidades combinadas de posicionamiento espacial y de detección de fuentes de olor basadas en disoluciones de etanol. La plataforma presentada -formada por el GNBot, su placa electrónica GNBoard y la capa de abstracción software realizada en Python- simplificará por tanto el proceso de implementación y evaluación de diversas estrategias de detección, búsqueda y monitorización de odorantes, con la estandarización de enjambres de robots provistos de narices artificiales y otros sensores multimodales.This research work addresses the design of a robotic platform oriented towards the implementation of bio-inspired cooperative search strategies. In particular, the design processes of both the electronics and hardware have been focused towards the real-world validation of algorithms that are capable of tackling search problems that have uncertainty, such as the search of odor sources that have spatio-temporal variability. These kind of problems can be solved more efficiently with the use of swarms formed by a considerable amount of robots, and thus the proposed platform makes use of low cost components. This has been possible with the combination of standardized elements -as the Arduino controller board and other integrated sensors- with custom parts that can be manufactured with a 3D printer attending to the open-source hardware philosophy. Among the design requirements is the energy efficiency -in order to maximize the working range of the robots-, their positioning capability within the search environment, and multiple sensor integration -with the incorporation of an artificial nose, luminosity, distance, humidity and temperature sensors, as well as an electronic compass-. Another subject that is tackled is the use of an efficient wireless communication strategy based on ZigBee. The developed system, named GNBot, has also been validated in the aspects of energy efficiency and for its combined capabilities for autonomous spatial positioning and detection of ethanol-based odor sources. The presented platform -formed by the GNBot, the GNBoard electronics and the abstraction layer built in Python- will thus simplify the processes of implementation and evaluation of various strategies for the detection, search and monitoring of odorants with conveniently standardized robot swarms provided with artificial noses and other multimodal sensors

    Probabilistic framework for image understanding applications using Bayesian Networks

    Get PDF
    Machine learning algorithms have been successfully utilized in various systems/devices. They have the ability to improve the usability/quality of such systems in terms of intelligent user interface, fast performance, and more importantly, high accuracy. In this research, machine learning techniques are used in the field of image understanding, which is a common research area between image analysis and computer vision, to involve higher processing level of a target image to make sense of the scene captured in it. A general probabilistic framework for image understanding where topics associated with (i) collection of images to generate a comprehensive and valid database, (ii) generation of an unbiased ground-truth for the aforesaid database, (iii) selection of classification features and elimination of the redundant ones, and (iv) usage of such information to test a new sample set, are discussed. Two research projects have been developed as examples of the general image understanding framework; identification of region(s) of interest, and image segmentation evaluation. These techniques, in addition to others, are combined in an object-oriented rendering system for printing applications. The discussion included in this doctoral dissertation explores the means for developing such a system from an image understanding/ processing aspect. It is worth noticing that this work does not aim to develop a printing system. It is only proposed to add some essential features for current printing pipelines to achieve better visual quality while printing images/photos. Hence, we assume that image regions have been successfully extracted from the printed document. These images are used as input to the proposed object-oriented rendering algorithm where methodologies for color image segmentation, region-of-interest identification and semantic features extraction are employed. Probabilistic approaches based on Bayesian statistics have been utilized to develop the proposed image understanding techniques

    On Improving the Effectiveness of Control Signals from Chronic Microelectrodes for Cortical Neuroprostheses.

    Full text link
    Using microelectrodes, we can record neural signals which can eventually be used to control cortical neuroprostheses for assisting people with spinal-cord trauma, stroke deficits, amyotrophic lateral sclerosis (ALS), and motor-neuron disease. The goal of this dissertation is to investigate the effectiveness of unit activity and local field potentials (LFPs) in the motor cortex using chronic multisite microelectrodes. In the first study, we first demonstrate a novel method to assess neural signatures across sessions and quantify neuron stability by providing a probabilistic estimate of similarity between spike clusters. This technique supports both single and multiple electrodes, and has applications in designing appropriate neuroprosthetic control algorithms, determining recalibration parameters, investigating neural plasticity, and assessing significance of particular metrics. Next, we investigate unit activity and LFP activity in the different layers of the motor cortex. Four rats were implanted bilaterally with multi-site single-shank silicon microelectrode arrays in the motor cortex while the animal was engaged in a movement-direction task. In the second study, we demonstrate that units in the lower layers (Layers 5,6) are more likely to encode direction information as compared to units in the upper layers (Layers 2,3) suggesting electrode sites clustered in the lower layers provide access to more salient control information. In the third study, we investigate LFP activity across the different layers. We analyzed LFP activity in four frequency ranges: low (3-15Hz), low-gamma (15-40Hz), high-gamma (40-70Hz) and high (>70Hz) across both upper (Layers 2,3) and lower layers (Layers 5,6) of the cortex. Our analysis based on 585 LFP recordings from 39 sessions shows that the low frequency range (3-15Hz) is more likely to encode directional information. We found a significant difference in LFP activity between the upper and lower layers of cortex in the high gamma (40-70Hz) range. Our results indicate that LFPs are viable alternative control signals that can be recorded from either upper or lower layers of the cortex for performance comparable to our results from unit activity.Ph.D.Biomedical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/62231/1/hparikh_1.pd

    Parts-based object detection using multiple views

    Get PDF
    One of the most important problems in image understanding is robust object detection. Small changes in object appearance due to illumination, viewpoint, and occlusion can drastically change the performance of many object detection methods. Non-rigid object can be even more difficult to reliably detect. The unique contribution of this thesis was to extend the approach of parts-based object detection to include support for multiple viewing angles. Bayesian networks were used to integrate the parts detection of each view in a flexible manner, so that the experimental performance of each part detector could be incorporated into the decision. The detectors were implemented using neural networks trained using the bootstrapping method of repeated backpropagation, where false-positives are introduced to the training set as negative examples. The Bayesian networks were trained with a separate dataset to gauge the performance of each part detector. The final decision of object detection system was made with a logical OR operation. The domain of human face detection was used to demonstrate the power of this approach. The FERET human face database was selected to provide both training and testing images; a frontal and a side view were chosen from the available poses. Part detectors were trained on four features from each view?the right and left eyes, the nose, and the mouth. The individual part detection rates ranged from 85% to 95% against testing images. Crossvalidation was used to test the system as a whole, giving average view detection rates of 96.7% and 97.2% respectively for the frontal and side views, and an overall face detection rate of 96.9% amongst true-positive images. A 5.7% false-positive rate was demonstrated against background clutter images. These results compare favorably with existing methods, but provide the additional benefit of face detection at different view angles
    corecore