428 research outputs found

    Electromechanics of an Ocean Current Turbine

    Get PDF
    The development of a numeric simulation for predicting the performance of an Ocean Current Energy Conversion System is presented in this thesis along with a control system development using a PID controller for the achievement of specified rotational velocity set-points. In the beginning, this numeric model is implemented in MATLAB/Simulink® and it is used to predict the performance of a three phase squirrel single-cage type induction motor/generator in two different cases. The first case is a small 3 meter rotor diameter, 20 kW ocean current turbine with fixed pitch blades, and the second case a 20 meter, 720 kW ocean current turbine with variable pitch blades. Furthermore, the second case is also used for the development of a Voltage Source Variable Frequency Drive for the induction motor/generator. Comparison among the Variable Frequency Drive and a simplified model is applied. Finally, the simulation is also used to estimate the average electric power generation from the 720 kW Ocean Current Energy Conversion System which consists of an induction generator and an ocean current turbine connected with a shaft which modeled as a mechanical vibration system

    Electromechanics of an Ocean Current Turbine

    Get PDF
    The development of a numeric simulation for predicting the performance of an Ocean Current Energy Conversion System is presented in this thesis along with a control system development using a PID controller for the achievement of specified rotational velocity set-points. In the beginning, this numeric model is implemented in MATLAB/Simulink® and it is used to predict the performance of a three phase squirrel single-cage type induction motor/generator in two different cases. The first case is a small 3 meter rotor diameter, 20 kW ocean current turbine with fixed pitch blades, and the second case a 20 meter, 720 kW ocean current turbine with variable pitch blades. Furthermore, the second case is also used for the development of a Voltage Source Variable Frequency Drive for the induction motor/generator. Comparison among the Variable Frequency Drive and a simplified model is applied. Finally, the simulation is also used to estimate the average electric power generation from the 720 kW Ocean Current Energy Conversion System which consists of an induction generator and an ocean current turbine connected with a shaft which modeled as a mechanical vibration system

    Induction Motors

    Get PDF
    AC motors play a major role in modern industrial applications. Squirrel-cage induction motors (SCIMs) are probably the most frequently used when compared to other AC motors because of their low cost, ruggedness, and low maintenance. The material presented in this book is organized into four sections, covering the applications and structural properties of induction motors (IMs), fault detection and diagnostics, control strategies, and the more recently developed topology based on the multiphase (more than three phases) induction motors. This material should be of specific interest to engineers and researchers who are engaged in the modeling, design, and implementation of control algorithms applied to induction motors and, more generally, to readers broadly interested in nonlinear control, health condition monitoring, and fault diagnosis

    Motor Fault Diagnosis Using Higher Order Statistical Analysis of Motor Power Supply Parameters

    Get PDF
    Motor current signature analysis (MCSA) has been an effective method to monitor electrical machines for many years, predominantly because of its low instrumentation cost, remote implementation and comprehensive information contents. However, it has shortages of low accuracy and efficiency in resolving weak signals from incipient faults, such as detecting early stages of induction motor fault. In this thesis MCSA has been improved to accurately detect electrical and mechanical faults in the induction motor namely broken rotor bars, stator faults and motor bearing faults. Motor current signals corresponding to a healthy (baseline) and faulty condition on induction motor at different loads (zero, 25%, 50% and 75% of full load) were rearranged and the baseline current data were examined using conventional methods in frequency domain and referenced for comparison with new modulation signal bispectrum. Based on the fundamental modulation effect of the weak fault signatures, a new method based on modulation signal bispectrum (MSB) analysis is introduced to characterise the modulation and hence for accurate quantification of the signatures. This method is named as (MSB-SE). For broken rotor bar(BRB), the results show that MSB-SE suggested in this research outperforms conventional bispectrum CB significantly for all cases due its high performance of nonlinear modulation detection and random noise suppression, which demonstrates that MSB-SE is an outstanding technique whereas (CB) is inefficient for motor current signal analysis [1] . Moreover the new estimators produce more accurate results at zero, 25%, 50%, 75% of full load and under broken rotor bar, compared with power spectrum analysis. Especially it can easily separate the half BRB at a load as low as 25% from baseline where PS would not produce a correct separation. In case of stator faults, a MSB-SE is investigated to detect different severities of stator faults for both open and short circuit. It shows that MSB-SE has the capability to accurately estimate modulation degrees and suppress the random and non-modulation components. Test results show that MSB-SE has a better performance in differentiating spectrum amplitudes due to stator faults and hence produces better diagnosis performance, compared with that of power spectrum (PS). For motor bearing faults, tests were performed with three bearing conditions: baseline, outer race fault and inner race fault. Because the signals associated with faults produce small modulations to supply component and high noise levels, MSB-SE is used to detect and diagnose different motor bearing defects. The results show that bearing faults can induce detectable amplitude increases at its characteristic frequencies. MSB-SE peaks show a clear difference at these frequencies whereas the conventional power spectrum provides change evidences only at some of the frequencies. This shows that MSB has a better and reliable performance in detecting small changes from the faulty bearing for fault detection and diagnosis. In addition, the study also shows that current signals from motors with variable frequency drive controller have too much noise and it is unlikely to discriminate the small bearing fault component. This research also applies a mathematical model for the simulation of current signals under healthy and broken bars condition in order to further understand the characteristics of fault signature to ensure the methodologies used and accuracy achieved in the detection and diagnosis results. The results show that the frequency spectrum of current signal outputs from the model take the expected form with peaks at the sideband frequency and associated harmonics

    On-line Condition Monitoring, Fault Detection and Diagnosis in Electrical Machines and Power Electronic Converters

    Get PDF
    The objective of this PhD research is to develop robust, and non-intrusive condition monitoring methods for induction motors fed by closed-loop inverters. The flexible energy forms synthesized by these connected power electronic converters greatly enhance the performance and expand the operating region of induction motors. They also significantly alter the fault behavior of these electric machines and complicate the fault detection and protection. The current state of the art in condition monitoring of power-converter-fed electric machines is underdeveloped as compared to the maturing condition monitoring techniques for grid-connected electric machines. This dissertation first investigates the stator turn-to-turn fault modelling for induction motors (IM) fed by a grid directly. A novel and more meaningful model of the motor itself was developed and a comprehensive study of the closed-loop inverter drives was conducted. A direct torque control (DTC) method was selected for controlling IM’s electromagnetic torque and stator flux-linkage amplitude in industrial applications. Additionally, a new driver based on DTC rules, predictive control theory and fuzzy logic inference system for the IM was developed. This novel controller improves the performance of the torque control on the IM as it reduces most of the disadvantages of the classical and predictive DTC drivers. An analytical investigation of the impacts of the stator inter-turn short-circuit of the machine in the controller and its reaction was performed. This research sets a based knowledge and clear foundations of the events happening inside the IM and internally in the DTC when the machine is damaged by a turn fault in the stator. This dissertation also develops a technique for the health monitoring of the induction machine under stator turn failure. The developed technique was based on the monitoring of the off-diagonal term of the sequence component impedance matrix. Its advantages are that it is independent of the IM parameters, it is immune to the sensors’ errors, it requires a small learning stage, compared with NN, and it is not intrusive, robust and online. The research developed in this dissertation represents a significant advance that can be utilized in fault detection and condition monitoring in industrial applications, transportation electrification as well as the utilization of renewable energy microgrids. To conclude, this PhD research focuses on the development of condition monitoring techniques, modelling, and insightful analyses of a specific type of electric machine system. The fundamental ideas behind the proposed condition monitoring technique, model and analysis are quite universal and appeals to a much wider variety of electric machines connected to power electronic converters or drivers. To sum up, this PhD research has a broad beneficial impact on a wide spectrum of power-converter-fed electric machines and is thus of practical importance

    Mathematical Modelling of Grid Connected Fixed- Pitch Variable-Speed Permanent Magnet Synchronous Generators for Wind Turbines

    Get PDF
    This project develops the mathematical model of a 10kW permanent magnet synchronous generator (PMSG), which is designed for a fixed-pitch variable-speed wind turbine, and its corresponding simulation model for the control of the PMSG for grid connection using MATLAB/Simulink. The model includes sub-modules, such as a model of the wind speed, a model of the PMSG, a model of the rectifier circuit, a model of the boost chopper circuit, a model of the space vector pulse width modulation (SVPWM) inverter, and a model of the power grid voltage sag detection for low voltage ride through (LVRT). The rectifier is a 3-phase uncontrolled diode full-bridge circuit. The boost chopper circuit offers a direct current (DC) power supply with constant voltage for the inverter. Sampled signals of instantaneous 3-phase voltage (from the power grid) to obtain the phase angle, frequency and amplitude, are used to generate SVPWM signals to control the inverter’s output. In the model of the power grid voltage sag detection, a novel direct-quadrature (DQ) transformation is introduced to detect the voltage sag of the power grid. This thesis systematically analyses the mathematical model along with its sub-modules, and creates simulation models using MATLAB/Simulink. The simulation results demonstrate that both the mathematical model and simulation model are correct, and the parameters of the generator output are synchronised with the main grid

    Fuzzy logic controlled SPMSM drives for long cable applications

    Get PDF
    In many industrial Variable Speed Drives (VSD) applications require that the Voltage Source Pulse Width Modulation (PWM) Inverter and the motor be at separate locations, often resulting in long motor leads, high voltage oscillation at the motor terminal, increase harmonics content and affect the overall motor speed performance. To our knowledge, a detailed investigation of the impact of various cable lengths over speed response has not been reported in the literature. Therefore, the research focuses on investigation and evaluation of the performance of a Vector Controlled Sinusoidal Permanent Magnet Synchronous Motor (SPMSM) drive, controlled by PI speed controller and FL speed controller for different cable lengths conditions. Current control is performed in the stationary reference frame, using hysteresis current controllers. The scope of research is focusing on low speed operation based on simplified 9 rules Fuzzy Logic speed controller and tested for tested 100 meter maximum cable lengths and 1.1kW SPMSM. The drive is modeled, simulated and implemented using MATLAB, SIMULINK and FUZZY LOGIC Toolboxes. The experimental study is carried out based on dSPACE hardware platform for validating the simulation results. PI and Fuzzy Logic speed controllers are designed and tuned to obtain the best performance with criteria less than 0.72% overshoot and ±0.1 steady state error are acceptable. All the controller parameters are fixed based on designed case study for overall simulation and experimental studies. The overshoot/undershoot, settling time and rise time of the speed response are used to evaluate the controller performance. The simulation and experimental results have showed that the speed response and load rejection are degraded due to variation in cable length and increase of motor inertia. The proposed Fuzzy Logic has demonstrated better performance in term of step speed command, load rejection capability and THD compare with the results obtained from PI speed controller for different cable length conditions. The THD of the three-phase stator current is increased when motor is connected with longer cable. Fuzzy Logic speed controller shows better THD of stator currents as compare to PI speed controller where the THD was remain constant even cable length was increasing. When switching frequency of the Hysteresis PWM is increased, the stator currents will be closer to sinusoidal and indirectly reduced the %THD of the drives. Study on variable speed drive performance versus different cable length can be further investigated for medium and high motor speed commands operation

    Source Grid Interface of Wind Energy Systems

    Get PDF
    Wind power is one of the most developed and rapidly growing renewable energy sources. Through extensive literature review this thesis synthesizes the existing knowledge of wind energy systems to offer useful information to developers of such systems. Any prototyping should be preceded by theoretical analysis and computer simulations, foundations for which are provided here. The thesis is devoted to an in-depth analysis of wind energy generators, system configurations, power converters, control schemes and dynamic and steady state performance of practical wind energy conversion systems (WECS). Attention is mainly focused on interfacing squirrel cage Induction generators (SCIG) and doubly-fed induction generators (DFIG) with the power network to capture optimal power, provide controllable active and reactive power and minimize network harmonics using the two-level converter, as a power electronic converter. Control of active and reactive power, frequency and voltage are indispensable for stability of the grid. This thesis focuses on two main control techniques, field oriented control (FOC) and direct torque control (DTC) for the SCIG. The dynamic model of induction generator is non-linear and hence for all types of control, the flux and the torque have to be decoupled for maintaining linearity between input and output for achieving high dynamic performance. FOC is used for decoupled control for rotor flux and electromagnetic torque . The stator current is decomposed into flux and torque producing components and they both are controlled independently. FOC uses three feedback control loops generate gating signals for the converter. DTC also achieves high dynamic performance by decoupling of rotor flux and electromagnetic torque without the intermediate current loops. DTC asks for the estimation of stator flux and torque and like FOC has 2 branches which have flux and torque comparators. The errors between the set and the estimated value are used to drive the inverters. The two methods are valid for both steady and transient state. Their validity is confirmed by simulating the systems on MATLAB/Simulink platform and comparing them the results obtained by hand calculations. Further DFIG’s are introduced. The dynamic model is developed using the machines equivalent circuit and is expressed in the stationary, rotor and the synchronous reference frames for evaluating the performance of the machine. The stator of the DFIG is directly interfaced to the grid and by controlling the rotor voltage by a two level back-to-back converter the grid synchronization and power control is maintained. The DTC and the direct power control (DPC) methods are used to control the rotor side (RSC) and the grid side converter (GSC). The RSC generates the 3-ph voltages of variable frequency in order to control the generator torque and the reactive power exchanged between the stator and the grid. The GSC exchanges active power with the grid injected by the RSC with a constant frequency. The steady and transient behavior of the machine is investigated through simulations
    • …
    corecore