9,045 research outputs found

    Ab initio RNA folding

    Full text link
    RNA molecules are essential cellular machines performing a wide variety of functions for which a specific three-dimensional structure is required. Over the last several years, experimental determination of RNA structures through X-ray crystallography and NMR seems to have reached a plateau in the number of structures resolved each year, but as more and more RNA sequences are being discovered, need for structure prediction tools to complement experimental data is strong. Theoretical approaches to RNA folding have been developed since the late nineties when the first algorithms for secondary structure prediction appeared. Over the last 10 years a number of prediction methods for 3D structures have been developed, first based on bioinformatics and data-mining, and more recently based on a coarse-grained physical representation of the systems. In this review we are going to present the challenges of RNA structure prediction and the main ideas behind bioinformatic approaches and physics-based approaches. We will focus on the description of the more recent physics-based phenomenological models and on how they are built to include the specificity of the interactions of RNA bases, whose role is critical in folding. Through examples from different models, we will point out the strengths of physics-based approaches, which are able not only to predict equilibrium structures, but also to investigate dynamical and thermodynamical behavior, and the open challenges to include more key interactions ruling RNA folding.Comment: 28 pages, 18 figure

    Towards high performance computing for molecular structure prediction using IBM Cell Broadband Engine - an implementation perspective

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA structure prediction problem is a computationally complex task, especially with pseudo-knots. The problem is well-studied in existing literature and predominantly uses highly coupled Dynamic Programming (DP) solutions. The problem scale and complexity become embarrassingly humungous to handle as sequence size increases. This makes the case for parallelization. Parallelization can be achieved by way of networked platforms (clusters, grids, etc) as well as using modern day multi-core chips.</p> <p>Methods</p> <p>In this paper, we exploit the parallelism capabilities of the IBM Cell Broadband Engine to parallelize an existing Dynamic Programming (DP) algorithm for RNA secondary structure prediction. We design three different implementation strategies that exploit the inherent data, code and/or hybrid parallelism, referred to as C-Par, D-Par and H-Par, and analyze their performances. Our approach attempts to introduce parallelism in critical sections of the algorithm. We ran our experiments on SONY Play Station 3 (PS3), which is based on the IBM Cell chip.</p> <p>Results</p> <p>Our results suggest that introducing parallelism in DP algorithm allows it to easily handle longer sequences which otherwise would consume a large amount of time in single core computers. The results further demonstrate the speed-up gain achieved in exploiting the inherent parallelism in the problem and also elicits the advantages of using multi-core platforms towards designing more sophisticated methodologies for handling a fairly long sequence of RNA.</p> <p>Conclusion</p> <p>The speed-up performance reported here is promising, especially when sequence length is long. To the best of our literature survey, the work reported in this paper is probably the first-of-its-kind to utilize the IBM Cell Broadband Engine (a heterogeneous multi-core chip) to implement a DP. The results also encourage using multi-core platforms towards designing more sophisticated methodologies for handling a fairly long sequence of RNA to predict its secondary structure.</p

    Towards high performance computing for molecular structure prediction using IBM Cell Broadband Engine - an implementation perspective

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>RNA structure prediction problem is a computationally complex task, especially with pseudo-knots. The problem is well-studied in existing literature and predominantly uses highly coupled Dynamic Programming (DP) solutions. The problem scale and complexity become embarrassingly humungous to handle as sequence size increases. This makes the case for parallelization. Parallelization can be achieved by way of networked platforms (clusters, grids, etc) as well as using modern day multi-core chips.</p> <p>Methods</p> <p>In this paper, we exploit the parallelism capabilities of the IBM Cell Broadband Engine to parallelize an existing Dynamic Programming (DP) algorithm for RNA secondary structure prediction. We design three different implementation strategies that exploit the inherent data, code and/or hybrid parallelism, referred to as C-Par, D-Par and H-Par, and analyze their performances. Our approach attempts to introduce parallelism in critical sections of the algorithm. We ran our experiments on SONY Play Station 3 (PS3), which is based on the IBM Cell chip.</p> <p>Results</p> <p>Our results suggest that introducing parallelism in DP algorithm allows it to easily handle longer sequences which otherwise would consume a large amount of time in single core computers. The results further demonstrate the speed-up gain achieved in exploiting the inherent parallelism in the problem and also elicits the advantages of using multi-core platforms towards designing more sophisticated methodologies for handling a fairly long sequence of RNA.</p> <p>Conclusion</p> <p>The speed-up performance reported here is promising, especially when sequence length is long. To the best of our literature survey, the work reported in this paper is probably the first-of-its-kind to utilize the IBM Cell Broadband Engine (a heterogeneous multi-core chip) to implement a DP. The results also encourage using multi-core platforms towards designing more sophisticated methodologies for handling a fairly long sequence of RNA to predict its secondary structure.</p

    Detecting and comparing non-coding RNAs in the high-throughput era.

    Get PDF
    In recent years there has been a growing interest in the field of non-coding RNA. This surge is a direct consequence of the discovery of a huge number of new non-coding genes and of the finding that many of these transcripts are involved in key cellular functions. In this context, accurately detecting and comparing RNA sequences has become important. Aligning nucleotide sequences is a key requisite when searching for homologous genes. Accurate alignments reveal evolutionary relationships, conserved regions and more generally any biologically relevant pattern. Comparing RNA molecules is, however, a challenging task. The nucleotide alphabet is simpler and therefore less informative than that of amino-acids. Moreover for many non-coding RNAs, evolution is likely to be mostly constrained at the structural level and not at the sequence level. This results in very poor sequence conservation impeding comparison of these molecules. These difficulties define a context where new methods are urgently needed in order to exploit experimental results to their full potential. This review focuses on the comparative genomics of non-coding RNAs in the context of new sequencing technologies and especially dealing with two extremely important and timely research aspects: the development of new methods to align RNAs and the analysis of high-throughput data

    A parallel approach to miRNA target prediction

    Get PDF
    Master'sMASTER OF SCIENC

    MicroTar: predicting microRNA targets from RNA duplexes

    Get PDF
    BACKGROUND: The accurate prediction of a comprehensive set of messenger RNAs (targets) regulated by animal microRNAs (miRNAs) remains an open problem. In particular, the prediction of targets that do not possess evolutionarily conserved complementarity to their miRNA regulators is not adequately addressed by current tools. RESULTS: We have developed MicroTar, an animal miRNA target prediction tool based on miRNA-target complementarity and thermodynamic data. The algorithm uses predicted free energies of unbound mRNA and putative mRNA-miRNA heterodimers, implicitly addressing the accessibility of the mRNA 3' untranslated region. MicroTar does not rely on evolutionary conservation to discern functional targets, and is able to predict both conserved and non-conserved targets. MicroTar source code and predictions are accessible at , where both serial and parallel versions of the program can be downloaded under an open-source licence. CONCLUSION: MicroTar achieves better sensitivity than previously reported predictions when tested on three distinct datasets of experimentally-verified miRNA-target interactions in C. elegans, Drosophila, and mouse

    RNA SECONDARY STRUCTURE PREDICTION TOOL

    Get PDF
    Ribonucleic Acid (RNA) is one of the major macromolecules essential to all forms of life. Apart from the important role played in protein synthesis, it performs several important functions such as gene regulation, catalyst of biochemical reactions and modification of other RNAs. In some viruses, instead of DNA, RNA serves as the carrier of genetic information. RNA is an interesting subject of research in the scientific community. It has lead to important biological discoveries. One of the major problems researchers are trying to solve is the RNA structure prediction problem. It has been found that the structure of RNA is evolutionary conserved and it can help to determine the functions served by them. In this project, I will be developing a tool to predict the secondary structure of RNA using simulated annealing. The aim of this project is to understand in detail the simulated annealing algorithm and implement it to find solutions to RNA secondary structure. The results will be compared with the very famous tool Mfold, developed by Michael Zuker, using the minimum free energy approach

    Study of RNA Secondary Structure Prediction Algorithms

    Get PDF
    Dynamic programming algorithms such as Nussinov algorithm and Zuker algorithm define criteria to search the most stable RNA secondary structures. Stochastic Context-Free Grammar (SCFG) predicts the most possible RNA secondary structure using context-free grammar and a defined set of probabilities for each grammar rule. These algorithms form the base of using computer programs to predict RNA secondary structures without pseudoknots. In this report, we review these RNA secondary structure prediction algorithms and present our own software implementations of these algorithms. The Nussinov algorithm is easy to understand. But our results show that the Nussinov algorithm is overly simplified and can not produce the most accurate result. The SCFG algorithm may be powerful. But its result is also inaccurate because there are no accurate probabilities for each corresponding grammar rule. The Zuker’s minimum free energy method incorporated far more biological knowledge in its energy definitions. Thus, its predictions are much better than the other two algorithms. Our implementations use both recursive and non-recursive function calls. Recursion is easy to understand, but recursion introduces significant overhead. We are able to rearrange the function calls to effectively stop the recursion. The non-recursion feature allows us to parallelize the most computing intensive part of the calculation. By abstracting a secondary structure to a tree representation and a string representation, we compared our prediction results with the results from experiment measurement or non-conventional general purpose computational methods, and results from popular package such as MFOLD. Our results also illustrate the limitation of these algorithms. The limitations clearly demonstrate that more biological and chemical knowledge of RNA need to be incorporated into the RNA secondary structure prediction algorithms

    A Multiobjective Approach Applied to the Protein Structure Prediction Problem

    Get PDF
    Interest in discovering a methodology for solving the Protein Structure Prediction problem extends into many fields of study including biochemistry, medicine, biology, and numerous engineering and science disciplines. Experimental approaches, such as, x-ray crystallographic studies or solution Nuclear Magnetic Resonance Spectroscopy, to mathematical modeling, such as minimum energy models are used to solve this problem. Recently, Evolutionary Algorithm studies at the Air Force Institute of Technology include the following: Simple Genetic Algorithm (GA), messy GA, fast messy GA, and Linkage Learning GA, as approaches for potential protein energy minimization. Prepackaged software like GENOCOP, GENESIS, and mGA are in use to facilitate experimentation of these techniques. In addition to this software, a parallelized version of the fmGA, the so-called parallel fast messy GA, is found to be good at finding semi-optimal answers in reasonable wall clock time. The aim of this work is to apply a Multiobjective approach to solving this problem using a modified fast messy GA. By dividing the CHARMm energy model into separate objectives, it should be possible to find structural configurations of a protein that yield lower energy values and ultimately more correct conformations
    corecore