1,081 research outputs found

    Conceivable security risks and authentication techniques for smart devices

    Get PDF
    With the rapidly escalating use of smart devices and fraudulent transaction of users’ data from their devices, efficient and reliable techniques for authentication of the smart devices have become an obligatory issue. This paper reviews the security risks for mobile devices and studies several authentication techniques available for smart devices. The results from field studies enable a comparative evaluation of user-preferred authentication mechanisms and their opinions about reliability, biometric authentication and visual authentication techniques

    Touchalytics: On the Applicability of Touchscreen Input as a Behavioral Biometric for Continuous Authentication

    Full text link
    We investigate whether a classifier can continuously authenticate users based on the way they interact with the touchscreen of a smart phone. We propose a set of 30 behavioral touch features that can be extracted from raw touchscreen logs and demonstrate that different users populate distinct subspaces of this feature space. In a systematic experiment designed to test how this behavioral pattern exhibits consistency over time, we collected touch data from users interacting with a smart phone using basic navigation maneuvers, i.e., up-down and left-right scrolling. We propose a classification framework that learns the touch behavior of a user during an enrollment phase and is able to accept or reject the current user by monitoring interaction with the touch screen. The classifier achieves a median equal error rate of 0% for intra-session authentication, 2%-3% for inter-session authentication and below 4% when the authentication test was carried out one week after the enrollment phase. While our experimental findings disqualify this method as a standalone authentication mechanism for long-term authentication, it could be implemented as a means to extend screen-lock time or as a part of a multi-modal biometric authentication system.Comment: to appear at IEEE Transactions on Information Forensics & Security; Download data from http://www.mariofrank.net/touchalytics

    Behavioral biometric based personal authentication in feature phones

    Get PDF
    The usage of mobile phones has increased multifold in the recent decades mostly because of its utility in most of the aspects of daily life, such as communications, entertainment, and financial transactions. Feature phones are generally the keyboard based or lower version of touch based mobile phones, mostly targeted for efficient calling and messaging. In comparison to smart phones, feature phones have no provision of a biometrics system for the user access. The literature, have shown very less attempts in designing a biometrics system which could be most suitable to the low-cost feature phones. A biometric system utilizes the features and attributes based on the physiological or behavioral properties of the individual. In this research, we explore the usefulness of keystroke dynamics for feature phones which offers an efficient and versatile biometric framework. In our research, we have suggested an approach to incorporate the user’s typing patterns to enhance the security in the feature phone. We have applied k-nearest neighbors (k-NN) with fuzzy logic and achieved the equal error rate (EER) 1.88% to get the better accuracy. The experiments are performed with 25 users on Samsung On7 Pro C3590. On comparison, our proposed technique is competitive with almost all the other techniques available in the literature

    Using Keystroke Dynamics and Location Verification Method for Mobile Banking Authentication.

    Get PDF
    With the rise of security attacks on mobile phones, traditional methods to authentication such as Personal Identification Numbers (PIN) and Passwords are becoming ineffective due to their limitations such as being easily forgettable, discloser, lost or stolen. Keystroke dynamics is a form of behavioral biometric based authentication where an analysis of how users type is monitored and used in authenticating users into a system. The use of location data provides a verification mechanism based on user’s location which can be obtained via their phones Global Positioning System (GPS) facility. This study evaluated existing authentication methods and their performance summarized. To address the limitations of traditional authentication methods this paper proposed an alternative authentication method that uses Keystroke dynamics and location data. To evaluate the proposed authentication method experiments were done through use of a prototype android mobile banking application that captured the typing behavior while logging in and location data from 60 users. The experiment results were lower compared to the previous studies provided in this paper with a False Rejection Rate (FRR) of 5.33% which is the percentage of access attempts by legitimate users that have been rejected by the system and a False Acceptance Rate (FAR) of 3.33% which is the percentage of access attempts by imposters that have been accepted by the system incorrectly, giving an Equal Error Rate (EER) of 4.3%.The outcome of this study demonstrated keystroke dynamics and location verification on PINs as an alternative authentication of mobile banking transactions building on current smartphones features with less implementation costs with no additional hardware compared to other biometric methods. Keywords: smartphones, biometric, mobile banking, keystroke dynamics, location verification, securit

    A Survey of Machine Learning Techniques for Behavioral-Based Biometric User Authentication

    Get PDF
    Authentication is a way to enable an individual to be uniquely identified usually based on passwords and personal identification number (PIN). The main problems of such authentication techniques are the unwillingness of the users to remember long and challenging combinations of numbers, letters, and symbols that can be lost, forged, stolen, or forgotten. In this paper, we investigate the current advances in the use of behavioral-based biometrics for user authentication. The application of behavioral-based biometric authentication basically contains three major modules, namely, data capture, feature extraction, and classifier. This application is focusing on extracting the behavioral features related to the user and using these features for authentication measure. The objective is to determine the classifier techniques that mostly are used for data analysis during authentication process. From the comparison, we anticipate to discover the gap for improving the performance of behavioral-based biometric authentication. Additionally, we highlight the set of classifier techniques that are best performing for behavioral-based biometric authentication

    Android Based Behavioral Biometric Authentication via Multi-Modal Fusion

    Get PDF
    Because mobile devices are easily lost or stolen, continuous authentication is extremely desirable for them. Behavioral biometrics provides non-intrusive continuous authentication that has much less impact on usability than active authentication. However single-modality behavioral biometrics has proven less accurate than standard active authentication. This thesis presents a behavioral biometric system that uses multi-modal fusion with user data from touch, keyboard, and orientation sensors. Testing of ve users shows that fusion of modalities provides more accurate authentication than each individual modalities by itself. Using the BayesNet classification algorithm, fusion achieves False Acceptance Rate (FAR) and False Rejection Rate (FRR) values of 9.65% and 2% respectively, each of which is 8% lower than the closest individual modality
    • …
    corecore