947 research outputs found

    In Silico screening of nonsteroidal anti-inflammatory drugs and their combined action on Prostaglandin H Synthase-1

    Get PDF
    The detailed kinetic model of Prostaglandin H Synthase-1 (PGHS-1) was applied to in silico screening of dose-dependencies for the different types of nonsteroidal anti-inflammatory drugs (NSAIDs), such as: reversible/irreversible, nonselective/selective to PGHS-1/PGHS-2 and time dependent/independent inhibitors (aspirin, ibuprofen, celecoxib, etc.) The computational screening has shown a significant variability in the IC50s of the same drug, depending on different in vitro and in vivo experimental conditions. To study this high heterogeneity in the inhibitory effects of NSAIDs, we have developed an in silico approach to evaluate NSAID action on targets under different PGHS-1 microenvironmental conditions, such as arachidonic acid, reducing cofactor, and peroxide concentrations. The designed technique permits translating the drug IC50, obtained in one experimental setting to another, and predicts in vivo inhibitory effects based on the relevant in vitro data. For the aspirin case, we elucidated the mechanism underlying the enhancement and reduction (aspirin resistance) of its efficacy, depending on PGHS-1 microenvironment in in vitro/in vivo experimental settings. We also present the results of the in silico screening of the combined action of sets of two NSAIDs (aspirin with ibuprofen, aspirin with celecoxib), and study the mechanism of the experimentally observed effect of the suppression of aspirin-mediated PGHS-1 inhibition by selective and nonselective NSAIDs. Furthermore, we discuss the applications of the obtained results to the problems of standardization of NSAID test assay, dependence of the NSAID efficacy on cellular environment of PGHS-1, drug resistance, and NSAID combination therapy

    Comparative Modeling and Functional Characterization of Two Enzymes of the Cyclooxygenase Pathway in Drosophila melanogaster

    Full text link
    Eicosanoids are biologically active molecules oxygenated from twenty carbon polyunsaturated fatty acids. Natural eicosanoids exert potent biological effects in humans, and a great deal of pharmaceutical research has led to the discovery of compounds for selective inhibition of specific enzymes in eicosanoid biosynthesis. Coupled with different receptors, eicosanoids mediate various physiological and pathophysiological processes, including fever generation, pain response, vasoconstriction, vasodilation, platelet aggregation, platelet declumping, body temperature maintenance and sleep-wake cycle regulation. In mammals, the eicosanoid biosynthesis has three pathways: the cyclooxygenase (COX) pathway, the lipoxygenase (LOX) pathway and the epoxygenase pathway. The COX pathway synthesizes prostanoids, which are important signaling molecules in inflammation. Because of their central role in inflammatory disease and human health, COX enzymes continue to be a focus of intense research as new details emerge about their mechanism of action and their interactions with NSAIDs. To date, the majority of studies dealing with the COX pathway are centered on mammalian systems. Although the literature is rich in speculations that prostaglandins are central signaling molecules for mediating and coordinating insect cellular immunity, genes responsible for encoding COX or COX-like enzymes and other enzymes in the COX pathway have not been reported in insects. The value of Drosophila melanogaster as a model organism is well established, and the fundamental regulatory signaling mechanisms that regulate immunity at the cellular level in human and flies are conserved. Given the importance of eicosanoids in mammalian and insect immunity, this study was designed to identify and characterize the enzymes that mediate eicosanoid biosynthesis in D. melanogaster computationally. After a preliminary extensive search for putative D. melanogaster homologues for all enzymes in the COX pathway, we conducted a systematic, comprehensive, and detailed computational investigation for two enzymes, COX and prostaglandin E synthase (PGES) in an endeavor to model and characterize the possible candidates and identify those that possess all the requisite sequence and structural motifs to qualify as valid COX(s)/PGE synthase proteins. In this study, we report the presence of qualified D. melanogaster COX(s)/PGE synthase proteins, characterize their biophysical properties, and compare them with their mammalian counterparts. This study lays the groundwork for further exploration of these proteins and establishing their role in D. melanogaster inflammation and immunity, opening up avenues for addressing the use of this model organism in COX signaling and its crosstalk with other signaling pathways

    The molecular pharmacology and in vivo activity of 2-(4-chloro-6-(2,3-dimethylphenylamino)pyrimidin-2-ylthio)octanoic acid (YS121), a dual inhibitor of microsomal prostaglandin E2 synthase-1 and 5-lipoxygenase.

    Get PDF
    The microsomal prostaglandin E2 synthase (mPGES)-1 is one of the terminal isoenzymes of prostaglandin (PG) E2 biosynthesis. Pharmacological inhibitors of mPGES-1 are proposed as an alternative to nonsteroidal anti-inflammatory drugs. We recently presented the design and synthesis of a series of pirinixic acid derivatives that dually inhibit mPGES-1 and 5-lipoxygenase. Here, we investigated the mechanism of mPGES-1 inhibition, the selectivity profile, and the in vivo activity of α-(n-hexyl)- substituted pirinixic acid [YS121; 2-(4-chloro-6-(2,3-dimethylphenylamino) pyrimidin-2-ylthio)octanoic acid)] as a lead compound. In cell-free assays, YS121 inhibited human mPGES-1 in a reversible and noncompetitive manner (IC 50 = 3.4 μM), and surface plasmon resonance spectroscopy studies using purified in vitro-translated human mPGES-1 indicate direct, reversible, and specific binding to mPGES-1 (KD = 10-14 μM). In lipopolysaccharide-stimulated human whole blood, PGE2 formation was concentration dependently inhibited (IC50 =2 μM), whereas concomitant generation of the cyclooxygenase (COX)-2-derived thromboxane B2 and 6-keto PGF1α and the COX-1-derived 12(S)-hydroxy-5-cis-8,10- transheptadecatrienoic acid was not significantly reduced. In carrageenan-induced rat pleurisy, YS121 (1.5 mg/kg i.p.) blocked exudate formation and leukocyte infiltration accompanied by reduced pleural levels of PGE2 and leukotriene B4 but also of 6-keto PGF 1α. Taken together, these results indicate that YS121 is a promising inhibitor of mPGES-1 with anti-inflammatory efficiency in human whole blood as well as in vivo

    Ascorbic acid enhances the inhibitory effect of aspirin on neuronal cyclooxygenase-2-mediated prostaglandin E2 production.

    Get PDF
    Inhibition of neuronal cyclooxygenase-2 (COX-2) and hence prostaglandin E2 (PGE2) synthesis by non-steroidal anti-inflammatory drugs has been suggested to protect neuronal cells in a variety of pathophysiological situations including Alzheimer's disease and ischemic stroke. Ascorbic acid (vitamin C) has also been shown to protect cerebral tissue in a variety of experimental conditions, which has been attributed to its antioxidant capacity. In the present study, we show that ascorbic acid dose-dependently inhibited interleukin-1beta (IL-1beta)-mediated PGE2 synthesis in the human neuronal cell line, SK-N-SH. Furthermore, in combination with aspirin, ascorbic acid augmented the inhibitory effect of aspirin on PGE2 synthesis. However, ascorbic acid had no synergistic effect along with other COX inhibitors (SC-58125 and indomethacin). The inhibition of IL-1beta-mediated PGE2 synthesis by ascorbic acid was not due to the inhibition of the expression of COX-2 or microsomal prostaglandin E synthase (mPGES-1). Rather, ascorbic acid dose-dependently (0.1-100 microM) produced a significant reduction in IL-1beta-mediated production of 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha), a reliable indicator of free radical formation, suggesting that the effects of ascorbic acid on COX-2-mediated PGE2 biosynthesis may be the result of the maintenance of the neuronal redox status since COX activity is known to be enhanced by oxidative stress. Our results provide in vitro evidence that the neuroprotective effects of ascorbic acid may depend, at least in part, on its ability to reduce neuronal COX-2 activity and PGE2 synthesis, owing to its antioxidant properties. Further, these experiments suggest that a combination of aspirin with ascorbic acid constitutes a novel approach to render COX-2 more sensitive to inhibition by aspirin, allowing an anti-inflammatory therapy with lower doses of aspirin, thereby avoiding the side effects of the usually high dose aspirin treatment

    Phospholipase A\u3csub\u3e2\u3c/sub\u3e Expression During the Estrous Cycle and Early Pregnancy

    Get PDF
    Acute control of prostaglandin production is essential for normal estrous cyclicity and maintenance of early pregnancy. The rate limiting step for prostaglandin production is the activation of Phospholipase A2. There are many phospholipase A2s, but few have been investigated in reproductive studies. The objective of this study was to examine PLA2 Groups IV and VI protein and mRNA expression in the uterine endometrium during the estrous cycle and early pregnancy in ewes. Ewes were monitored for estrous and uterine tissues were collected surgically on days 5 (n=3), 10(n=3) and 15(n=3) of the estrous cycle. Endometrium from pregnant animals were harvested on days 14(n=3), 15(n=1), 16(n=2), 17(n=1) or 20(n=2). Endometrial scrapings were collected in attempts to harvest luminal epithelial cells primarily and tissue samples were collected to harvest samples containing all cellular endometrial components. Samples were analyzed by western blot analysis and qRT-PCR to detect protein and mRNA expression of both PLA2s Group IV and VI. Western blot results revealed that protein expression of Group IVA was greatest on day ten of the estrous cycle but was not significantly different form days 5 and 15, possibly due to animal variation. Group IVA was significantly elevated on day 14 of pregnancy (P2 expression is not the sole regulator of prostaglandin production, but it does play an integral role that is tissue and cell type specific in both the estrous cycle and early pregnancy

    The Biosynthesis of Enzymatically Oxidized Lipids

    Get PDF
    Enzymatically oxidized lipids are a specific group of biomolecules that function as keysignaling mediators and hormones, regulating various cellular and physiological processesfrom metabolism and cell death to inflammation and the immune response. They arebroadly categorized as either polyunsaturated fatty acid (PUFA) containing (free acidoxygenated PUFA “oxylipins”, endocannabinoids, oxidized phospholipids) or cholesterolderivatives (oxysterols, steroid hormones, and bile acids). Their biosynthesis isaccomplished by families of enzymes that include lipoxygenases (LOX),cyclooxygenases (COX), cytochrome P450s (CYP), and aldo-keto reductases (AKR). Incontrast, non-enzymatically oxidized lipids are produced by uncontrolled oxidation andare broadly considered to be harmful. Here, we provide an overview of the biochemistryand enzymology of LOXs, COXs, CYPs, and AKRs in humans. Next, we presentbiosynthetic pathways for oxylipins, oxidized phospholipids, oxysterols, bile acids andsteroid hormones. Last, we address gaps in knowledge and suggest directions forfuture work

    Vasoconstrictor prostanoids

    Get PDF
    In cardiovascular diseases and during aging, endothelial dysfunction is due in part to the release of endothelium-derived contracting factors that counteract the vasodilator effect of the nitric oxide. Endotheliumdependent contractions involve the activation of endothelial cyclooxygenases and the release of various prostanoids, which activate thromboxane prostanoid (TP) receptors of the underlying vascular smooth muscle. The stimulation of TP receptors elicits not only the contraction and the proliferation of vascular smooth muscle cells but also diverse physiological/pathophysiological reactions, including platelet aggregation and activation of endothelial inflammatory responses. TP receptor antagonists curtail endothelial dysfunction in diseases such as hypertension and diabetes, are potent antithrombotic agents, and prevent vascular inflammation. © Springer-Verlag 2009.postprin

    Comprehensive expression analysis of prostanoid enzymes and receptors in the human endometrium across the menstrual cycle

    Get PDF
    Prostanoids are well-described primary mediators of inflammatory processes and are essential for the normal physiological function of the female reproductive system. The aim of this study was to determine the temporal expression of the prostanoid biosynthetic enzymes (PTGS1, PTGS2, PTGES, PTGES2, PTGES3, AKR1B1, AKR1C3, CBR1, HPGDS, PTGDS, PTGIS, TBXAS1 and HPGD) and the prostanoid receptors (PTGER1, PTGER2, PTGER3, PTGER4, PTGFR, PTGDR, GPR44, PTGIR and TBXA2R) in the human endometrium throughout the menstrual cycle. The analysis identified PTGFR to have a distinct expression profile compared with other components of the prostanoid system, as expression is maximal during the proliferative phase. Immunohistochemical analysis for PTGER1 suggests a dual function for this receptor depending on its temporal (proliferative versus secretory) and spatial (nuclear versus cell membrane) expression. The expression profiles of the PGF2α synthases identified AKR1B1 and CBR1 as the likely regulators of PGF2α production during the menstrual phase. Immunohistochemical analysis for AKR1B1, CBR1 and AKR1C3 suggest expression to be in the glandular epithelium and vasculature. This study represents the first comprehensive analysis of the components of prostanoid biosynthetic and signalling pathway in the human endometrium. The expression profiles described have the potential to identify specific prostanoid components that may be dysregulated in inflammatory-associated disorders of the endometrium
    corecore