1,338 research outputs found

    Scheduling strategies for LTE uplink with flow behaviour analysis

    Get PDF
    Long Term Evolution (LTE) is a cellular technology developed to support\ud diversity of data traffic at potentially high rates. It is foreseen to extend the capacity and improve the performance of current 3G cellular networks. A key\ud mechanism in the LTE traffic handling is the packet scheduler, which is in charge of allocating resources to active flows in both the frequency and time dimension. In this paper we present a performance comparison of two distinct scheduling schemes for LTE uplink (fair fixed assignment and fair work-conserving) taking into account both packet level characteristics and flow level dynamics due to the random user behaviour. For that purpose, we apply a combined analytical/simulation approach which enables fast evaluation of performance measures such as mean flow transfer times manifesting the impact of resource allocation strategies. The results show that the resource allocation strategy has a crucial impact on performance and that some trends are observed only if flow level dynamics are considered

    Low-feedback multiple-access and scheduling via location and geometry information

    Get PDF

    Performance Analysis of Heterogeneous Feedback Design in an OFDMA Downlink with Partial and Imperfect Feedback

    Full text link
    Current OFDMA systems group resource blocks into subband to form the basic feedback unit. Homogeneous feedback design with a common subband size is not aware of the heterogeneous channel statistics among users. Under a general correlated channel model, we demonstrate the gain of matching the subband size to the underlying channel statistics motivating heterogeneous feedback design with different subband sizes and feedback resources across clusters of users. Employing the best-M partial feedback strategy, users with smaller subband size would convey more partial feedback to match the frequency selectivity. In order to develop an analytical framework to investigate the impact of partial feedback and potential imperfections, we leverage the multi-cluster subband fading model. The perfect feedback scenario is thoroughly analyzed, and the closed form expression for the average sum rate is derived for the heterogeneous partial feedback system. We proceed to examine the effect of imperfections due to channel estimation error and feedback delay, which leads to additional consideration of system outage. Two transmission strategies: the fix rate and the variable rate, are considered for the outage analysis. We also investigate how to adapt to the imperfections in order to maximize the average goodput under heterogeneous partial feedback.Comment: To appear in IEEE Trans. on Signal Processin

    Optimal decentralized spectral resource allocation for OFDMA downlink of femto networks via adaptive gradient vector step size approach

    Get PDF
    For the orthogonal frequency division multiple access (OFDMA) downlink of a femto network, the resource allocation scheme would aim to maximize the area spectral efficiency (ASE) subject to constraints on the radio resources per transmission interval accessible by each femtocell. An optimal resource allocation scheme for completely decentralized femtocell deployments leads to a nonlinear optimization problem because the cost function of the optimization problem is nonlinear. In this paper, an adaptive gradient vector step size approach is proposed for finding the optimal solution of the optimization problem. Computer numerical simulation results show that our proposed method is more efficient than existing exhaustive search methods
    • 

    corecore