11,326 research outputs found

    Byzantine Attack and Defense in Cognitive Radio Networks: A Survey

    Full text link
    The Byzantine attack in cooperative spectrum sensing (CSS), also known as the spectrum sensing data falsification (SSDF) attack in the literature, is one of the key adversaries to the success of cognitive radio networks (CRNs). In the past couple of years, the research on the Byzantine attack and defense strategies has gained worldwide increasing attention. In this paper, we provide a comprehensive survey and tutorial on the recent advances in the Byzantine attack and defense for CSS in CRNs. Specifically, we first briefly present the preliminaries of CSS for general readers, including signal detection techniques, hypothesis testing, and data fusion. Second, we analyze the spear and shield relation between Byzantine attack and defense from three aspects: the vulnerability of CSS to attack, the obstacles in CSS to defense, and the games between attack and defense. Then, we propose a taxonomy of the existing Byzantine attack behaviors and elaborate on the corresponding attack parameters, which determine where, who, how, and when to launch attacks. Next, from the perspectives of homogeneous or heterogeneous scenarios, we classify the existing defense algorithms, and provide an in-depth tutorial on the state-of-the-art Byzantine defense schemes, commonly known as robust or secure CSS in the literature. Furthermore, we highlight the unsolved research challenges and depict the future research directions.Comment: Accepted by IEEE Communications Surveys and Tutoiral

    Relay Selection for Wireless Communications Against Eavesdropping: A Security-Reliability Tradeoff Perspective

    Full text link
    This article examines the secrecy coding aided wireless communications from a source to a destination in the presence of an eavesdropper from a security-reliability tradeoff (SRT) perspective. Explicitly, the security is quantified in terms of the intercept probability experienced at the eavesdropper, while the outage probability encountered at the destination is used to measure the transmission reliability. We characterize the SRT of conventional direct transmission from the source to the destination and show that if the outage probability is increased, the intercept probability decreases, and vice versa. We first demonstrate that the employment of relay nodes for assisting the source-destination transmissions is capable of defending against eavesdropping, followed by quantifying the benefits of single-relay selection (SRS) as well as of multi-relay selection (MRS) schemes. More specifically, in the SRS scheme, only the single "best" relay is selected for forwarding the source signal to the destination, whereas the MRS scheme allows multiple relays to participate in this process. It is illustrated that both the SRS and MRS schemes achieve a better SRT than the conventional direct transmission, especially upon increasing the number of relays. Numerical results also show that as expected, the MRS outperforms the SRS in terms of its SRT. Additionally, we present some open challenges and future directions for the wireless relay aided physical-layer security.Comment: 16 pages, IEEE Network, 201

    Multiband Spectrum Access: Great Promises for Future Cognitive Radio Networks

    Full text link
    Cognitive radio has been widely considered as one of the prominent solutions to tackle the spectrum scarcity. While the majority of existing research has focused on single-band cognitive radio, multiband cognitive radio represents great promises towards implementing efficient cognitive networks compared to single-based networks. Multiband cognitive radio networks (MB-CRNs) are expected to significantly enhance the network's throughput and provide better channel maintenance by reducing handoff frequency. Nevertheless, the wideband front-end and the multiband spectrum access impose a number of challenges yet to overcome. This paper provides an in-depth analysis on the recent advancements in multiband spectrum sensing techniques, their limitations, and possible future directions to improve them. We study cooperative communications for MB-CRNs to tackle a fundamental limit on diversity and sampling. We also investigate several limits and tradeoffs of various design parameters for MB-CRNs. In addition, we explore the key MB-CRNs performance metrics that differ from the conventional metrics used for single-band based networks.Comment: 22 pages, 13 figures; published in the Proceedings of the IEEE Journal, Special Issue on Future Radio Spectrum Access, March 201
    • …
    corecore