4,817 research outputs found

    Exploring missing heritability in neurodevelopmental disorders:Learning from regulatory elements

    Get PDF
    In this thesis, I aimed to solve part of the missing heritability in neurodevelopmental disorders, using computational approaches. Next to the investigations of a novel epilepsy syndrome and investigations aiming to elucidate the regulation of the gene involved, I investigated and prioritized genomic sequences that have implications in gene regulation during the developmental stages of human brain, with the goal to create an atlas of high confidence non-coding regulatory elements that future studies can assess for genetic variants in genetically unexplained individuals suffering from neurodevelopmental disorders that are of suspected genetic origin

    Information actors beyond modernity and coloniality in times of climate change:A comparative design ethnography on the making of monitors for sustainable futures in Curaçao and Amsterdam, between 2019-2022

    Get PDF
    In his dissertation, Mr. Goilo developed a cutting-edge theoretical framework for an Anthropology of Information. This study compares information in the context of modernity in Amsterdam and coloniality in Curaçao through the making process of monitors and develops five ways to understand how information can act towards sustainable futures. The research also discusses how the two contexts, that is modernity and coloniality, have been in informational symbiosis for centuries which is producing negative informational side effects within the age of the Anthropocene. By exploring the modernity-coloniality symbiosis of information, the author explains how scholars, policymakers, and data-analysts can act through historical and structural roots of contemporary global inequities related to the production and distribution of information. Ultimately, the five theses propose conditions towards the collective production of knowledge towards a more sustainable planet

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    Single-cell time-series analysis of metabolic rhythms in yeast

    Get PDF
    The yeast metabolic cycle (YMC) is a biological rhythm in budding yeast (Saccharomyces cerevisiae). It entails oscillations in the concentrations and redox states of intracellular metabolites, oscillations in transcript levels, temporal partitioning of biosynthesis, and, in chemostats, oscillations in oxygen consumption. Most studies on the YMC have been based on chemostat experiments, and it is unclear whether YMCs arise from interactions between cells or are generated independently by each cell. This thesis aims at characterising the YMC in single cells and its response to nutrient and genetic perturbations. Specifically, I use microfluidics to trap and separate yeast cells, then record the time-dependent intensity of flavin autofluorescence, which is a component of the YMC. Single-cell microfluidics produces a large amount of time series data. Noisy and short time series produced from biological experiments restrict the computational tools that are useful for analysis. I developed a method to filter time series, a machine learning model to classify whether time series are oscillatory, and an autocorrelation method to examine the periodicity of time series data. My experimental results show that yeast cells show oscillations in the fluorescence of flavins. Specifically, I show that in high glucose conditions, cells generate flavin oscillations asynchronously within a population, and these flavin oscillations couple with the cell division cycle. I show that cells can individually reset the phase of their flavin oscillations in response to abrupt nutrient changes, independently of the cell division cycle. I also show that deletion strains generate flavin oscillations that exhibit different behaviour from dissolved oxygen oscillations from chemostat conditions. Finally, I use flux balance analysis to address whether proteomic constraints in cellular metabolism mean that temporal partitioning of biosynthesis is advantageous for the yeast cell, and whether such partitioning explains the timing of the metabolic cycle. My results show that under proteomic constraints, it is advantageous for the cell to sequentially synthesise biomass components because doing so shortens the timescale of biomass synthesis. However, the degree of advantage of sequential over parallel biosynthesis is lower when both carbon and nitrogen sources are limiting. This thesis thus confirms autonomous generation of flavin oscillations, and suggests a model in which the YMC responds to nutrient conditions and subsequently entrains the cell division cycle. It also emphasises the possibility that subpopulations in the culture explain chemostat-based observations of the YMC. Furthermore, this thesis paves the way for using computational methods to analyse large datasets of oscillatory time series, which is useful for various fields of study beyond the YMC

    Exploring missing heritability in neurodevelopmental disorders:Learning from regulatory elements

    Get PDF

    UMSL Bulletin 2022-2023

    Get PDF
    The 2022-2023 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1087/thumbnail.jp

    Simultaneous Multiparametric and Multidimensional Cardiovascular Magnetic Resonance Imaging

    Get PDF
    No abstract available

    Undergraduate Catalog of Studies, 2022-2023

    Get PDF

    Using machine learning to predict pathogenicity of genomic variants throughout the human genome

    Get PDF
    Geschätzt mehr als 6.000 Erkrankungen werden durch Veränderungen im Genom verursacht. Ursachen gibt es viele: Eine genomische Variante kann die Translation eines Proteins stoppen, die Genregulation stören oder das Spleißen der mRNA in eine andere Isoform begünstigen. All diese Prozesse müssen überprüft werden, um die zum beschriebenen Phänotyp passende Variante zu ermitteln. Eine Automatisierung dieses Prozesses sind Varianteneffektmodelle. Mittels maschinellem Lernen und Annotationen aus verschiedenen Quellen bewerten diese Modelle genomische Varianten hinsichtlich ihrer Pathogenität. Die Entwicklung eines Varianteneffektmodells erfordert eine Reihe von Schritten: Annotation der Trainingsdaten, Auswahl von Features, Training verschiedener Modelle und Selektion eines Modells. Hier präsentiere ich ein allgemeines Workflow dieses Prozesses. Dieses ermöglicht es den Prozess zu konfigurieren, Modellmerkmale zu bearbeiten, und verschiedene Annotationen zu testen. Der Workflow umfasst außerdem die Optimierung von Hyperparametern, Validierung und letztlich die Anwendung des Modells durch genomweites Berechnen von Varianten-Scores. Der Workflow wird in der Entwicklung von Combined Annotation Dependent Depletion (CADD), einem Varianteneffektmodell zur genomweiten Bewertung von SNVs und InDels, verwendet. Durch Etablierung des ersten Varianteneffektmodells für das humane Referenzgenome GRCh38 demonstriere ich die gewonnenen Möglichkeiten Annotationen aufzugreifen und neue Modelle zu trainieren. Außerdem zeige ich, wie Deep-Learning-Scores als Feature in einem CADD-Modell die Vorhersage von RNA-Spleißing verbessern. Außerdem werden Varianteneffektmodelle aufgrund eines neuen, auf Allelhäufigkeit basierten, Trainingsdatensatz entwickelt. Diese Ergebnisse zeigen, dass der entwickelte Workflow eine skalierbare und flexible Möglichkeit ist, um Varianteneffektmodelle zu entwickeln. Alle entstandenen Scores sind unter cadd.gs.washington.edu und cadd.bihealth.org frei verfügbar.More than 6,000 diseases are estimated to be caused by genomic variants. This can happen in many possible ways: a variant may stop the translation of a protein, interfere with gene regulation, or alter splicing of the transcribed mRNA into an unwanted isoform. It is necessary to investigate all of these processes in order to evaluate which variant may be causal for the deleterious phenotype. A great help in this regard are variant effect scores. Implemented as machine learning classifiers, they integrate annotations from different resources to rank genomic variants in terms of pathogenicity. Developing a variant effect score requires multiple steps: annotation of the training data, feature selection, model training, benchmarking, and finally deployment for the model's application. Here, I present a generalized workflow of this process. It makes it simple to configure how information is converted into model features, enabling the rapid exploration of different annotations. The workflow further implements hyperparameter optimization, model validation and ultimately deployment of a selected model via genome-wide scoring of genomic variants. The workflow is applied to train Combined Annotation Dependent Depletion (CADD), a variant effect model that is scoring SNVs and InDels genome-wide. I show that the workflow can be quickly adapted to novel annotations by porting CADD to the genome reference GRCh38. Further, I demonstrate the integration of deep-neural network scores as features into a new CADD model, improving the annotation of RNA splicing events. Finally, I apply the workflow to train multiple variant effect models from training data that is based on variants selected by allele frequency. In conclusion, the developed workflow presents a flexible and scalable method to train variant effect scores. All software and developed scores are freely available from cadd.gs.washington.edu and cadd.bihealth.org
    corecore