364 research outputs found

    Straight-line Drawability of a Planar Graph Plus an Edge

    Full text link
    We investigate straight-line drawings of topological graphs that consist of a planar graph plus one edge, also called almost-planar graphs. We present a characterization of such graphs that admit a straight-line drawing. The characterization enables a linear-time testing algorithm to determine whether an almost-planar graph admits a straight-line drawing, and a linear-time drawing algorithm that constructs such a drawing, if it exists. We also show that some almost-planar graphs require exponential area for a straight-line drawing

    Counting Carambolas

    Full text link
    We give upper and lower bounds on the maximum and minimum number of geometric configurations of various kinds present (as subgraphs) in a triangulation of nn points in the plane. Configurations of interest include \emph{convex polygons}, \emph{star-shaped polygons} and \emph{monotone paths}. We also consider related problems for \emph{directed} planar straight-line graphs.Comment: update reflects journal version, to appear in Graphs and Combinatorics; 18 pages, 13 figure

    Computing k-Modal Embeddings of Planar Digraphs

    Get PDF
    Given a planar digraph G and a positive even integer k, an embedding of G in the plane is k-modal, if every vertex of G is incident to at most k pairs of consecutive edges with opposite orientations, i.e., the incoming and the outgoing edges at each vertex are grouped by the embedding into at most k sets of consecutive edges with the same orientation. In this paper, we study the k-Modality problem, which asks for the existence of a k-modal embedding of a planar digraph. This combinatorial problem is at the very core of a variety of constrained embedding questions for planar digraphs and flat clustered networks. First, since the 2-Modality problem can be easily solved in linear time, we consider the general k-Modality problem for any value of k>2 and show that the problem is NP-complete for planar digraphs of maximum degree Delta <= k+3. We relate its computational complexity to that of two notions of planarity for flat clustered networks: Planar Intersection-Link and Planar NodeTrix representations. This allows us to answer in the strongest possible way an open question by Di Giacomo [https://doi.org/10.1007/978-3-319-73915-1_37], concerning the complexity of constructing planar NodeTrix representations of flat clustered networks with small clusters, and to address a research question by Angelini et al. [https://doi.org/10.7155/jgaa.00437], concerning intersection-link representations based on geometric objects that determine complex arrangements. On the positive side, we provide a simple FPT algorithm for partial 2-trees of arbitrary degree, whose running time is exponential in k and linear in the input size. Second, motivated by the recently-introduced planar L-drawings of planar digraphs [https://doi.org/10.1007/978-3-319-73915-1_36], which require the computation of a 4-modal embedding, we focus our attention on k=4. On the algorithmic side, we show a complexity dichotomy for the 4-Modality problem with respect to Delta, by providing a linear-time algorithm for planar digraphs with Delta <= 6. This algorithmic result is based on decomposing the input digraph into its blocks via BC-trees and each of these blocks into its triconnected components via SPQR-trees. In particular, we are able to show that the constraints imposed on the embedding by the rigid triconnected components can be tackled by means of a small set of reduction rules and discover that the algorithmic core of the problem lies in special instances of NAESAT, which we prove to be always NAE-satisfiable - a result of independent interest that improves on Porschen et al. [https://doi.org/10.1007/978-3-540-24605-3_14]. Finally, on the combinatorial side, we consider outerplanar digraphs and show that any such a digraph always admits a k-modal embedding with k=4 and that this value of k is best possible for the digraphs in this family

    A New Approach for Visualizing UML Class Diagrams

    Get PDF
    UML diagrams have become increasingly important in the engineering and reengineering processes for software systems. Of particular interest are UML class diagrams whose purpose is to display class hierarchies (generalizations), associations, aggregations, and compositions in one picture. The combination of hierarchical and non-hierarchical relations poses a special challenge to a graph layout tool. Existing layout tools treat hierarchical and non-hierarchical relations either alike or as separate tasks in a two-phase process as in, e.g., cite{See97}. We suggest a new approach for visualizing UML class diagrams leading to a balanced mixture of the following aesthetic criteria: Crossing minimization, bend minimization, uniform direction within each class hierarchy, no nesting of one class hierarchy within another, orthogonal layout, merging of multiple inheritance edges, and good edge labelling. We have realized our approach within the graph drawing library GoVisual. Experiments show the superiority to state-of-the-art and industrial standard layouts

    A New Approach for Visualizing UML Class Diagrams

    Get PDF
    UML diagrams have become increasingly important in the engineering and reengineering processes for software systems. Of particular interest are UML class diagrams whose purpose is to display class hierarchies (generalizations), associations, aggregations, and compositions in one picture. The combination of hierarchical and non-hierarchical relations poses a special challenge to a graph layout tool. Existing layout tools treat hierarchical and non-hierarchical relations either alike or as separate tasks in a two-phase process as in, e.g., cite{See97}. We suggest a new approach for visualizing UML class diagrams leading to a balanced mixture of the following aesthetic criteria: Crossing minimization, bend minimization, uniform direction within each class hierarchy, no nesting of one class hierarchy within another, orthogonal layout, merging of multiple inheritance edges, and good edge labelling. We have realized our approach within the graph drawing library GoVisual. Experiments show the superiority to state-of-the-art and industrial standard layouts

    Planar Octilinear Drawings with One Bend Per Edge

    Get PDF
    In octilinear drawings of planar graphs, every edge is drawn as an alternating sequence of horizontal, vertical and diagonal (4545^\circ) line-segments. In this paper, we study octilinear drawings of low edge complexity, i.e., with few bends per edge. A kk-planar graph is a planar graph in which each vertex has degree less or equal to kk. In particular, we prove that every 4-planar graph admits a planar octilinear drawing with at most one bend per edge on an integer grid of size O(n2)×O(n)O(n^2) \times O(n). For 5-planar graphs, we prove that one bend per edge still suffices in order to construct planar octilinear drawings, but in super-polynomial area. However, for 6-planar graphs we give a class of graphs whose planar octilinear drawings require at least two bends per edge

    Combinatorial and Geometric Aspects of Computational Network Construction - Algorithms and Complexity

    Get PDF
    corecore