3 research outputs found

    Anthropometric and genetic determinants of cardiac morphology and function

    Get PDF
    Background Cardiac structure and function result from complex interactions between genetic and environmental factors. Population-based studies have relied on 2-dimensional cardiovascular magnetic resonance as the gold-standard for phenotyping. However, this technique provides limited global metrics and is insensitive to regional or asymmetric changes in left ventricular (LV) morphology. High-resolution 3-dimensional cardiac magnetic resonance (3D-CMR) with computational quantitative phenotyping, might improve on traditional CMR by enabling the creation of detailed 3D statistical models of the variation in cardiac phenotypes for use in studies of genetic and/or environmental effects on cardiac form or function. Purpose To determine whether 3D-CMR is applicable at scale, and provides methodological and statistical advantages over conventional imaging for large-scale population studies and to apply 3D-CMR to anthropometric and genetic studies of the heart. Methods 1530 volunteers (54.8% females, 74.7% Caucasian, mean age 41.3±13.0 years) without self-reported cardiovascular disease were recruited prospectively to the Digital Heart Project. Using a cardiac atlas-based software, these images were computationally processed and quantitatively analysed. Parameters such as myocardial shape, curvature, wall thickness, relative wall thickness, end-systolic wall stress, fractional wall thickening and ventricular volumes were extracted at over 46,000 points in the model. The relationships between these parameters and systolic blood pressure (SBP), fat mass, lean mass and genetic variationswere analysed using 3D regression models adjusted for body surface area, gender, race, age and multiple testing. Targeted resequencing of titin (TTN), the largest human gene and the commonest genetic cause of dilated cardiomyopathy, was performed in 928 subjects while common variants (~700.000) were genotyped in 1346 subjects. Results Automatically segmented 3D images were more accurate than 2D images at defining cardiac surfaces, resulting in fewer subjects being required to detect a statistically significant 1 mm difference in wall thickness. 3D-CMR enabled the detection of a strong and distinct regionality of the effects of SBP, body composition and genetic variation on the heart. It shows that the precursors of the hypertensive heart phenotype can be traced to healthy normotensives and that different ratios of body composition are associated with particular gender-specific patterns of cardiac remodelling. In 17 asymptomatic subjects with genetic variations associated with dilated cardiomyopathy, early stages of ventricular impairment and wall thinning were identified, which were not apparent by 2D imaging. Conclusions 3D-CMR combined with computational modelling provides high-resolution insight into the earliest stages of heart disease. These methods show promise for population-based studies of the anthropometric, environmental and genetic determinants of LV form and function in health and disease.Open Acces

    Ischemic Heart Disease in the Context of Different Comorbidities

    Get PDF
    Ischemic heart disease is a cardiovascular condition with very high prevalence worldwide and a major source of morbidity and mortality, especially in the geriatric population. The management of coronary artery disease is one that requires high-level expertise. The presence of comorbidities, usually multiple at advanced ages, makes the diagnosis and therapy very challenging. In this setting, the effort of a multidisciplinary team is urgently needed to achieve integrated management of these cases, being the only one capable of leading to the best results for the patient.The purpose of this reprint is to bring together the experience of specialists in treating ischemic heart disease in the presence of major related conditions that require particular modulations of diagnostic and therapeutic interventions. The chapters address difficult areas of interference between ischemic heart disease and frailty, cancer, liver diseases, inflammatory bowel disease and the new SARS-CoV-2 infection. Special consideration is granted to cardiac remodeling and progression to heart failure. Niche topics such as acute coronary syndromes triggered by carbon monoxide poisoning are present as well. The book also contains a particularly interesting chapter dedicated to the genetic substrate of ischemic heart disease, which once again emphasizes the need for a multidisciplinary team approach to this disease.We consider the reprint an excellent source of information for medical practitioners who have to solve complex cases of ischemic heart disease

    Computational methods for the analysis of functional 4D-CT chest images.

    Get PDF
    Medical imaging is an important emerging technology that has been intensively used in the last few decades for disease diagnosis and monitoring as well as for the assessment of treatment effectiveness. Medical images provide a very large amount of valuable information that is too huge to be exploited by radiologists and physicians. Therefore, the design of computer-aided diagnostic (CAD) system, which can be used as an assistive tool for the medical community, is of a great importance. This dissertation deals with the development of a complete CAD system for lung cancer patients, which remains the leading cause of cancer-related death in the USA. In 2014, there were approximately 224,210 new cases of lung cancer and 159,260 related deaths. The process begins with the detection of lung cancer which is detected through the diagnosis of lung nodules (a manifestation of lung cancer). These nodules are approximately spherical regions of primarily high density tissue that are visible in computed tomography (CT) images of the lung. The treatment of these lung cancer nodules is complex, nearly 70% of lung cancer patients require radiation therapy as part of their treatment. Radiation-induced lung injury is a limiting toxicity that may decrease cure rates and increase morbidity and mortality treatment. By finding ways to accurately detect, at early stage, and hence prevent lung injury, it will have significant positive consequences for lung cancer patients. The ultimate goal of this dissertation is to develop a clinically usable CAD system that can improve the sensitivity and specificity of early detection of radiation-induced lung injury based on the hypotheses that radiated lung tissues may get affected and suffer decrease of their functionality as a side effect of radiation therapy treatment. These hypotheses have been validated by demonstrating that automatic segmentation of the lung regions and registration of consecutive respiratory phases to estimate their elasticity, ventilation, and texture features to provide discriminatory descriptors that can be used for early detection of radiation-induced lung injury. The proposed methodologies will lead to novel indexes for distinguishing normal/healthy and injured lung tissues in clinical decision-making. To achieve this goal, a CAD system for accurate detection of radiation-induced lung injury that requires three basic components has been developed. These components are the lung fields segmentation, lung registration, and features extraction and tissue classification. This dissertation starts with an exploration of the available medical imaging modalities to present the importance of medical imaging in today’s clinical applications. Secondly, the methodologies, challenges, and limitations of recent CAD systems for lung cancer detection are covered. This is followed by introducing an accurate segmentation methodology of the lung parenchyma with the focus of pathological lungs to extract the volume of interest (VOI) to be analyzed for potential existence of lung injuries stemmed from the radiation therapy. After the segmentation of the VOI, a lung registration framework is introduced to perform a crucial and important step that ensures the co-alignment of the intra-patient scans. This step eliminates the effects of orientation differences, motion, breathing, heart beats, and differences in scanning parameters to be able to accurately extract the functionality features for the lung fields. The developed registration framework also helps in the evaluation and gated control of the radiotherapy through the motion estimation analysis before and after the therapy dose. Finally, the radiation-induced lung injury is introduced, which combines the previous two medical image processing and analysis steps with the features estimation and classification step. This framework estimates and combines both texture and functional features. The texture features are modeled using the novel 7th-order Markov Gibbs random field (MGRF) model that has the ability to accurately models the texture of healthy and injured lung tissues through simultaneously accounting for both vertical and horizontal relative dependencies between voxel-wise signals. While the functionality features calculations are based on the calculated deformation fields, obtained from the 4D-CT lung registration, that maps lung voxels between successive CT scans in the respiratory cycle. These functionality features describe the ventilation, the air flow rate, of the lung tissues using the Jacobian of the deformation field and the tissues’ elasticity using the strain components calculated from the gradient of the deformation field. Finally, these features are combined in the classification model to detect the injured parts of the lung at an early stage and enables an earlier intervention
    corecore