467 research outputs found

    Improving Accuracy of Information Extraction from Quantitative Magnetic Resonance Imaging

    Get PDF
    Quantitative MRI offers the possibility to produce objective measurements of tissue physiology at different scales. Such measurements are highly valuable in applications such as drug development, treatment monitoring or early diagnosis of cancer. From microstructural information in diffusion weighted imaging (DWI) or local perfusion and permeability in dynamic contrast (DCE-) MRI to more macroscopic observations of the local intestinal contraction, a number of aspects of quantitative MRI are considered in this thesis. The main objective of the presented work is to provide pre-processing techniques and model modification in order to improve the reliability of image analysis in quantitative MRI. Firstly, the challenge of clinical DWI signal modelling is investigated to overcome the biasing effect due to noise in the data. Several methods with increasing level of complexity are applied to simulations and a series of clinical datasets. Secondly, a novel Robust Data Decomposition Registration technique is introduced to tackle the problem of image registration in DCE-MRI. The technique allows the separation of tissue enhancement from motion effects so that the latter can be corrected independently. It is successfully applied to DCE-MRI datasets of different organs. This application is extended to the correction of respiratory motion in small bowel motility quantification in dynamic MRI data acquired during free breathing. Finally, a new local model for the arterial input function (AIF) is proposed. The estimation of the arterial blood contrast agent concentration in DCE-MRI is augmented using prior knowledge on local tissue structure from DWI. This work explores several types of imaging using MRI. It contributes to clinical quantitative MRI analysis providing practical solutions aimed at improving the accuracy and consistency of the parameters derived from image data

    Reliability and Uncertainty in Diffusion MRI Modelling

    Get PDF
    Current Diffusion MRI studies often utilise more complex models beyond the single exponential decay model used in clinical standards. As this thesis shows, however, two of these models, biexponential and kurtosis, experience mathematical, ill-conditioning issues that can arise when used with regression algorithms, causing extreme bias and/or variance in the parameter estimates. Using simulated noisy data measurements from known truth, the magnitude of the bias and variance was shown to vary based on signal parameters as well as SNR, and increasing the SNR did not reduce this uncertainty for all data. Parameter estimate reliability could not be assessed from a single regression fit in all cases unless bootstrap resampling was performed, in which case measurements with high parameter estimate uncertainty were successfully identified. Prior to data analysis, current studies may use information criteria or cross-validation model selection methods to establish the best model to assess a specific tissue condition. While the best selection method to use is currently unclear in the literature, when testing simulated data in this thesis, no model selection method performed more reliably than the others and these methods were merely biased toward either simpler or more complex models. When a specific model was used to generate simulated noisy data, no model selection method selected this true model for all signals, and the ability of these methods to select the true model also varied depending on the true signal parameters. The results from these simulated data analyses were applied to ex vivo data from excised prostate tissue, and both information criteria measures and bootstrap sample distributions were able to identify image voxels whose parameter estimates had likely reliability issues. Removing these voxels from analysis improved sample variance of the parameter estimates

    3D fusion of histology to multi-parametric MRI for prostate cancer imaging evaluation and lesion-targeted treatment planning

    Get PDF
    Multi-parametric magnetic resonance imaging (mpMRI) of localized prostate cancer has the potential to support detection, staging and localization of tumors, as well as selection, delivery and monitoring of treatments. Delineating prostate cancer tumors on imaging could potentially further support the clinical workflow by enabling precise monitoring of tumor burden in active-surveillance patients, optimized targeting of image-guided biopsies, and targeted delivery of treatments to decrease morbidity and improve outcomes. Evaluating the performance of mpMRI for prostate cancer imaging and delineation ideally includes comparison to an accurately registered reference standard, such as prostatectomy histology, for the locations of tumor boundaries on mpMRI. There are key gaps in knowledge regarding how to accurately register histological reference standards to imaging, and consequently further gaps in knowledge regarding the suitability of mpMRI for tasks, such as tumor delineation, that require such reference standards for evaluation. To obtain an understanding of the magnitude of the mpMRI-histology registration problem, we quantified the position, orientation and deformation of whole-mount histology sections relative to the formalin-fixed tissue slices from which they were cut. We found that (1) modeling isotropic scaling accounted for the majority of the deformation with a further small but statistically significant improvement from modeling affine transformation, and (2) due to the depth (mean±standard deviation (SD) 1.1±0.4 mm) and orientation (mean±SD 1.5±0.9°) of the sectioning, the assumption that histology sections are cut from the front faces of tissue slices, common in previous approaches, introduced a mean error of 0.7 mm. To determine the potential consequences of seemingly small registration errors such as described above, we investigated the impact of registration accuracy on the statistical power of imaging validation studies using a co-registered spatial reference standard (e.g. histology images) by deriving novel statistical power formulae that incorporate registration error. We illustrated, through a case study modeled on a prostate cancer imaging trial at our centre, that submillimeter differences in registration error can have a substantial impact on the required sample sizes (and therefore also the study cost) for studies aiming to detect mpMRI signal differences due to 0.5 – 2.0 cm3 prostate tumors. With the aim of achieving highly accurate mpMRI-histology registrations without disrupting the clinical pathology workflow, we developed a three-stage method for accurately registering 2D whole-mount histology images to pre-prostatectomy mpMRI that allowed flexible placement of cuts during slicing for pathology and avoided the assumption that histology sections are cut from the front faces of tissue slices. The method comprised a 3D reconstruction of histology images, followed by 3D–3D ex vivo–in vivo and in vivo–in vivo image transformations. The 3D reconstruction method minimized fiducial registration error between cross-sections of non-disruptive histology- and ex-vivo-MRI-visible strand-shaped fiducials to reconstruct histology images into the coordinate system of an ex vivo MR image. We quantified the mean±standard deviation target registration error of the reconstruction to be 0.7±0.4 mm, based on the post-reconstruction misalignment of intrinsic landmark pairs. We also compared our fiducial-based reconstruction to an alternative reconstruction based on mutual-information-based registration, an established method for multi-modality registration. We found that the mean target registration error for the fiducial-based method (0.7 mm) was lower than that for the mutual-information-based method (1.2 mm), and that the mutual-information-based method was less robust to initialization error due to multiple sources of error, including the optimizer and the mutual information similarity metric. The second stage of the histology–mpMRI registration used interactively defined 3D–3D deformable thin-plate-spline transformations to align ex vivo to in vivo MR images to compensate for deformation due to endorectal MR coil positioning, surgical resection and formalin fixation. The third stage used interactively defined 3D–3D rigid or thin-plate-spline transformations to co-register in vivo mpMRI images to compensate for patient motion and image distortion. The combined mean registration error of the histology–mpMRI registration was quantified to be 2 mm using manually identified intrinsic landmark pairs. Our data set, comprising mpMRI, target volumes contoured by four observers and co-registered contoured and graded histology images, was used to quantify the positive predictive values and variability of observer scoring of lesions following the Prostate Imaging Reporting and Data System (PI-RADS) guidelines, the variability of target volume contouring, and appropriate expansion margins from target volumes to achieve coverage of histologically defined cancer. The analysis of lesion scoring showed that a PI-RADS overall cancer likelihood of 5, denoting “highly likely cancer”, had a positive predictive value of 85% for Gleason 7 cancer (and 93% for lesions with volumes \u3e0.5 cm3 measured on mpMRI) and that PI-RADS scores were positively correlated with histological grade (ρ=0.6). However, the analysis also showed interobserver differences in PI-RADS score of 0.6 to 1.2 (on a 5-point scale) and an agreement kappa value of only 0.30. The analysis of target volume contouring showed that target volume contours with suitable margins can achieve near-complete histological coverage for detected lesions, despite the presence of high interobserver spatial variability in target volumes. Prostate cancer imaging and delineation have the potential to support multiple stages in the management of localized prostate cancer. Targeted biopsy procedures with optimized targeting based on tumor delineation may help distinguish patients who need treatment from those who need active surveillance. Ongoing monitoring of tumor burden based on delineation in patients undergoing active surveillance may help identify those who need to progress to therapy early while the cancer is still curable. Preferentially targeting therapies at delineated target volumes may lower the morbidity associated with aggressive cancer treatment and improve outcomes in low-intermediate-risk patients. Measurements of the accuracy and variability of lesion scoring and target volume contouring on mpMRI will clarify its value in supporting these roles

    Microstructural imaging of the human brain with a 'super-scanner': 10 key advantages of ultra-strong gradients for diffusion MRI

    Get PDF
    The key component of a microstructural diffusion MRI 'super-scanner' is a dedicated high-strength gradient system that enables stronger diffusion weightings per unit time compared to conventional gradient designs. This can, in turn, drastically shorten the time needed for diffusion encoding, increase the signal-to-noise ratio, and facilitate measurements at shorter diffusion times. This review, written from the perspective of the UK National Facility for In Vivo MR Imaging of Human Tissue Microstructure, an initiative to establish a shared 300 mT/m-gradient facility amongst the microstructural imaging community, describes ten advantages of ultra-strong gradients for microstructural imaging. Specifically, we will discuss how the increase of the accessible measurement space compared to a lower-gradient systems (in terms of Δ, b-value, and TE) can accelerate developments in the areas of 1) axon diameter distribution mapping; 2) microstructural parameter estimation; 3) mapping micro-vs macroscopic anisotropy features with gradient waveforms beyond a single pair of pulsed-gradients; 4) multi-contrast experiments, e.g. diffusion-relaxometry; 5) tractography and high-resolution imaging in vivo and 6) post mortem; 7) diffusion-weighted spectroscopy of metabolites other than water; 8) tumour characterisation; 9) functional diffusion MRI; and 10) quality enhancement of images acquired on lower-gradient systems. We finally discuss practical barriers in the use of ultra-strong gradients, and provide an outlook on the next generation of 'super-scanners'

    Classification of breast malignancy using optimised advanced diffusion-weighted imaging : and surgical planning for breast tumour resection using MR-guided focused ultrasound

    Get PDF
    Intravoxel Incoherent Motion Imaging (IVIM) is a non-invasive MR-imaging technique that enables the measurement of cellularity and vascularity using diffusion-weighted (DW)-imaging. IVIM has been applied to various cancer types including breast cancer, and is becoming more popular but lacks standardisation. The quantitative parameters; diffusion, D, perfusion fraction, f, and pseudo micro capillary diffusion, D* are thought to be correlated with tumour physiognomies such as proliferation, angiogenesis and heterogeneity.In Part 1 of this thesis, an optimised clinical b-value protocol is produced using a robust statistical method. This optimised protocol and various fitting methodologies are investigated in healthy volunteers, and then the most precise approach is applied in a clinical trial in patients following diagnosis of breast cancer, before treatment, to correlate IVIM parameters with breast cancer grade, histological type and molecular subtype with statistically significant results supporting IVIM’s potential as a non-invasive biomarker for malignancy. Monte Carlo simulations support this clinical application, where real data mean squared errors due to SNR limitations lie within simulated errors. A computed DW-imaging program is also presented to produce better quality images than acquired high b-value images as an adjunct to the optimised IVIM protocol.In Part 2 of this thesis, MR-guided Focused Ultrasound (MRgFUS) is explored as a means to create a pre-surgical template of thermally induced palpable markers to enable a surgeon to resect occult lesions and potentially reduce positive tumour margin status and local recurrence after breast conserving surgery. A surrogate animal model with pseudo lesion is presented, as well as a clinical tool to plan spot markers around a lesion as seen on MRI

    Scanner Specific Uncertainty of Quantitative MRI: Assessing Consistency for Clinical Implementation

    Get PDF
    In the past, many of the steps involved in the radiotherapy workflow have been heavily reliant on X-ray based anatomical imaging. Incorporating additional imaging modalities in this workflow has been shown to be promising. This includes aiding in generating and modifying a patient’s treatment regimen and also helping determine a patient’s response to treatment. Magnetic resonance imaging (MRI) is one of these modalities which can provide both enhanced soft-tissue anatomical images and supplementary information relating to changes in tissue physiology (which occurs at a faster rate than anatomical changes). Quantitative imaging biomarkers (QIBs), derived from quantitative MRI (qMRI) techniques, are measurable quantities that relate to tissue physiology (e.g., diffusion or perfusion) and thus are of particular interest in radiotherapy. Given these capabilities, there is potential for MRI to replace X-ray imaging in several steps of the radiotherapy workflow. However, until recent years there were no qMRI quality assurance (QA) guidelines available for departments to assess the technical performance of QIBs on their MRI scanners (e.g., accuracy and repeatability). This resulted in limited work being completed that investigates QIB performance metrics; ultimately limiting the widespread clinical utilisation of qMRI techniques. These investigations are essential to determine if the quantitative values derived can be accurately used to guide radiotherapy workflow decisions

    Computer-Assisted Characterization of Prostate Cancer on Magnetic Resonance Imaging

    Get PDF
    Prostate cancer (PCa) is one of the most prevalent cancers among men. Early diagnosis can improve survival and reduce treatment costs. Current inter-radiologist variability for detection of PCa is high. The use of multi-parametric magnetic resonance imaging (mpMRI) with machine learning algorithms has been investigated both for improving PCa detection and for PCa diagnosis. Widespread clinical implementation of computer-assisted PCa lesion characterization remains elusive; critically needed is a model that is validated against a histologic reference standard that is densely sampled in an unbiased fashion. We address this using our technique for highly accurate fusion of mpMRI with whole-mount digitized histology of the surgical specimen. In this thesis, we present models for characterization of malignant, benign and confounding tissue and aggressiveness of PCa. Further validation on a larger dataset could enable improved characterization performance, improving survival rates and enabling a more personalized treatment plan

    Adaptive microstructure-informed tractography for accurate brain connectivity analyses

    Get PDF
    Human brain has been subject of deep interest for centuries, given it's central role in controlling and directing the actions and functions of the body as response to external stimuli. The neural tissue is primarily constituted of neurons and, together with dendrites and the nerve synapses, constitute the gray matter (GM) which plays a major role in cognitive functions. The information processed in the GM travel from one region to the other of the brain along nerve cell projections, called axons. All together they constitute the white matter (WM) whose wiring organization still remains challenging to uncover. The relationship between structure organization of the brain and function has been deeply investigated on humans and animals based on the assumption that the anatomic architecture determine the network dynamics. In response to that, many different imaging techniques raised, among which diffusion-weighted magnetic resonance imaging (DW-MRI) has triggered tremendous hopes and expectations. Diffusion-weighted imaging measures both restricted and unrestricted diffusion, i.e. the degree of movement freedom of the water molecules, allowing to map the tissue fiber architecture in vivo and non-invasively. Based on DW-MRI data, tractography is able to exploit information of the local fiber orientation to recover global fiber pathways, called streamlines, that represent groups of axons. This, in turn, allows to infer the WM structural connectivity, becoming widely used in many different clinical applications as for diagnoses, virtual dissections and surgical planning. However, despite this unique and compelling ability, data acquisition still suffers from technical limitations and recent studies have highlighted the poor anatomical accuracy of the reconstructions obtained with this technique and challenged its effectiveness for studying brain connectivity. The focus of this Ph.D. project is to specifically address these limitations and to improve the anatomical accuracy of the structural connectivity estimates. To this aim, we developed a global optimization algorithm that exploits micro and macro-structure information, introducing an iterative procedure that uses the underlying tissue properties to drive the reconstruction using a semi-global approach. Then, we investigated the possibility to dynamically adapt the position of a set of candidate streamlines while embedding the anatomical prior of trajectories smoothness and adapting the configuration based on the observed data. Finally, we introduced the concept of bundle-o-graphy by implementing a method to model groups of streamlines based on the concept that axons are organized into fascicles, adapting their shape and extent based on the underlying microstructure

    Tractographie adaptative basée sur la microstructure pour des analyses précises de la connectivité cérébrale

    Get PDF
    Le cerveau est un sujet de recherche depuis plusieurs dĂ©cennies, puisque son rĂŽle est central dans la comprĂ©hension du genre humain. Le cerveau est composĂ© de neurones, oĂč leurs dendrites et synapses se retrouvent dans la matiĂšre grise alors que les axones en constituent la matiĂšre blanche. L’information traitĂ©e dans les diffĂ©rentes rĂ©gions de la matiĂšre grise est ensuite transmise par l’intermĂ©diaire des axones afin d’accomplir diffĂ©rentes fonctions cognitives. La matiĂšre blanche forme une structure d’interconnections complexe encore dif- ficile Ă  comprendre et Ă  Ă©tudier. La relation entre l’architecture et la fonction du cerveau a Ă©tĂ© Ă©tudiĂ©e chez les humains ainsi que pour d’autres espĂšces, croyant que l’architecture des axones dĂ©terminait la dynamique du rĂ©seau fonctionnel. Dans ce mĂȘme objectif, l’Imagerie par rĂ©sonance (IRM) est un outil formidable qui nous permet de visualiser les tissus cĂ©rĂ©braux de façon non-invasive. Plus partic- uliĂšrement, l’IRM de diffusion permet d’estimer et de sĂ©parer la diffusion libre de celle restreinte par la structure des tissus. Cette mesure de restriction peut ĂȘtre utilisĂ©e afin d’infĂ©rer l’orientation locale des faisceaux de matiĂšre blanche. L’algorithme de tractographie exploite cette carte d’orientation pour reconstruire plusieurs connexions de la matiĂšre blanche (nommĂ©es “streamlines”). Cette modĂ©lisation de la matiĂšre blanche permet d’estimer la connectivitĂ© cĂ©rĂ©brale dite structurelle entre les diffĂ©rentes rĂ©gions du cerveau. Ces rĂ©sultats peuvent ĂȘtre employĂ©s directement pour la planification chirurgicale ou indirectement pour l’analyse ou une Ă©valuation clinique. MalgrĂ© plusieurs de ses limitations, telles que sa variabilitĂ© et son imprĂ©cision, la tractographie reste l’unique moyen d’étudier l’architecture de la matiĂšre blanche ainsi que la connectivitĂ© cĂ©rĂ©brale de façon non invasive. L’objectif de ce projet de doctorat est de rĂ©pondre spĂ©cifiquement Ă  ces limitations et d’amĂ©liorer la prĂ©cision anatomique des estimations de connectivitĂ© structurelle. Dans ce but, nous avons dĂ©veloppĂ© un algorithme d’optimisation globale qui exploite les informations de micro et macrostructure, en introduisant une procĂ©dure itĂ©ra- tive qui utilise les propriĂ©tĂ©s sous-jacentes des tissus pour piloter la reconstruction en utilisant une approche semi-globale. Ensuite, nous avons Ă©tudiĂ© la possibilitĂ© d’adapter dynamiquement la position d’un ensemble de lignes de courant candidates tout en intĂ©grant le prĂ©alable anatomique de la douceur des trajectoires et en adap- tant la configuration en fonction des donnĂ©es observĂ©es. Enfin, nous avons introduit le concept de bundle-o-graphy en mettant en Ɠuvre une mĂ©thode pour modĂ©liser des groupes de lignes de courant basĂ©es sur le concept que les axones sont organisĂ©s en fascicules, en adaptant leur forme et leur Ă©tendue en fonction de la microstructure sous-jacente.Abstract : Human brain has been subject of deep interest for centuries, given it’s central role in controlling and directing the actions and functions of the body as response to external stimuli. The neural tissue is primarily constituted of neurons and, together with dendrites and the nerve synapses, constitute the gray matter (GM) which plays a major role in cognitive functions. The information processed in the GM travel from one region to the other of the brain along nerve cell projections, called axons. All together they constitute the white matter (WM) whose wiring organization still remains challenging to uncover. The relationship between structure organization of the brain and function has been deeply investigated on humans and animals based on the assumption that the anatomic architecture determine the network dynamics. In response to that, many different imaging techniques raised, among which diffusion-weighted magnetic resonance imaging (DW-MRI) has triggered tremendous hopes and expectations. Diffusion-weighted imaging measures both restricted and unrestricted diffusion, i.e. the degree of movement freedom of the water molecules, allowing to map the tissue fiber architecture in vivo and non-invasively. Based on DW-MRI data, tractography is able to exploit information of the local fiber orien- tation to recover global fiber pathways, called streamlines, that represent groups of axons. This, in turn, allows to infer the WM structural connectivity, becoming widely used in many different clinical applications as for diagnoses, virtual dissections and surgical planning. However, despite this unique and compelling ability, data acqui- sition still suffers from technical limitations and recent studies have highlighted the poor anatomical accuracy of the reconstructions obtained with this technique and challenged its effectiveness for studying brain connectivity. The focus of this Ph.D. project is to specifically address these limitations and to improve the anatomical accuracy of the structural connectivity estimates. To this aim, we developed a global optimization algorithm that exploits micro and macro- structure information, introducing an iterative procedure that uses the underlying tissue properties to drive the reconstruction using a semi-global approach. Then, we investigated the possibility to dynamically adapt the position of a set of candidate streamlines while embedding the anatomical prior of trajectories smoothness and adapting the configuration based on the observed data. Finally, we introduced the concept of bundle-o-graphy by implementing a method to model groups of streamlines based on the concept that axons are organized into fascicles, adapting their shape and extent based on the underlying microstructure.Sommario : Il cervello umano Ăš oggetto di profondo interesse da secoli, dato il suo ruolo centrale nel controllare e dirigere le azioni e le funzioni del corpo in risposta a stimoli esterno. Il tessuto neurale Ăš costituito principalmente da neuroni che, insieme ai dendriti e alle sinapsi nervose, costituiscono la materia grigia (GM), la quale riveste un ruolo centrale nelle funzioni cognitive. Le informazioni processate nella GM viaggiano da una regione all’altra del cervello lungo estensioni delle cellule nervose, chiamate assoni. Tutti insieme costituiscono la materia bianca (WM) la cui organizzazione strutturale rimane tuttora sconosciuta. Il legame tra struttura e funzione del cervello sono stati studiati a fondo su esseri umani e animali partendo dal presupposto che l’architettura anatomica determini la dinamica della rete funzionale. In risposta a ciĂČ, sono emerse diverse tecniche di imaging, tra cui la risonanza magnetica pesata per diffusione (DW-MRI) ha suscitato enormi speranze e aspettative. Questa tecnica misura la diffusione sia libera che ristretta, ovvero il grado di libertĂ  di movimento delle molecole d’acqua, consentendo di mappare l’architettura delle fibre neuronali in vivo e in maniera non invasiva. Basata su dati DW-MRI, la trattografia Ăš in grado di sfruttare le informazioni sull’orientamento locale delle fibre per ricostruirne i percorsi a livello globale. Questo, a sua volta, consente di estrarre la connettivitĂ  strutturale della WM, utilizzata in diverse applicazioni cliniche come per diagnosi, dissezioni virtuali e pianificazione chirurgica. Tuttavia, nonostante questa capacitĂ  unica e promettente, l’acquisizione dei dati soffre ancora di limitazioni tecniche e recenti studi hanno messo in evidenza la scarsa accuratezza anatomica delle ricostruzioni ottenute con questa tecnica, mettendone in dubbio l’efficacia per lo studio della connettivitĂ  cerebrale. Il focus di questo progetto di dottorato Ăš quello di affrontare in modo specifico queste limitazioni e di migliorare l’accuratezza anatomica delle stime di connettivitĂ  strutturale. A tal fine, abbiamo sviluppato un algoritmo di ottimizzazione globale che sfrutta le informazioni sia micro che macrostrutturali, introducendo una procedura iterativa che utilizza le proprietĂ  del tessuto neuronale per guidare la ricostruzione utilizzando un approccio semi-globale. Successivamente, abbiamo studiato la possibilitĂ  di adattare dinamicamente la posizione di un insieme di streamline candidate incorporando il prior anatomico per cui devono seguire traiettorie regolari e adattando la configurazione in base ai dati osservati. Infine, abbiamo introdotto il concetto di bundle-o-graphy implementando un metodo per modellare gruppi di streamline basato sul concetto che gli assoni sono organizzati in fasci, adattando la loro forma ed estensione in base alla microstruttura sottostante
    • 

    corecore