11 research outputs found

    MR imaging of left-ventricular function : novel image acquisition and analysis techniques.

    Get PDF
    Many cardiac diseases, such as myocardial ischemia, secondary to coronary artery disease, may be identified and localized through the analysis of cardiac deformations. Early efforts for quantifying ventricular wall motion used surgical implantation and tracking of radiopaque markers with X-ray imaging in canine hearts [1]. Such techniques are invasive and affect the regional motion pattern of the ventricular wall during the marker tracking process and, clearly are not feasible clinically. Noninvasive imaging techniques are vital and have been widely applied to the clinic. MRI is a noninvasive imaging technique with the capability to monitor and assess the progression of cardiovascular diseases (CVD) so that effective procedures for the care and treatment of patients can be developed by physicians and researchers. It is capable of providing 3D analysis of global and regional cardiac function with great accuracy and reproducibility. In the past few years, numerous efforts have been devoted to cardiac motion recovery and deformation analysis from MR imaging sequences. In order to assess cardiac function, there are two categories of indices that are used: global and regional indices. Global indices include ejection fraction, cavity volume, and myocardial mass [2]. They are important indices for cardiac disease diagnosis. However, these global indices are not specific for regional analysis. A quantitative assessment of regional parameters may prove beneficial for the diagnosis of disease and evaluation of severity and the quantification of treatment [3]. Local measures, such as wall deformation and strain in all regions of the heart, can provide objective regional quantification of ventricular wall function and relate to the location and extent of ischemic injury. This dissertation is concerned with the development of novel MR imaging techniques and image postprocessing algorithms to analyze left ventricular deformations. A novel pulse sequence, termed Orthogonal CSPAMM (OCSPAMM), has been proposed which results in the same acquisition time as SPAMM for 2D deformation estimation while keeping the main advantages of CSPAMM [4,5]: i.e., maintaining tag contrast through-out the ECG cycle. Different from CSPAMM, in OCSPAMM the second tagging pulse orientation is rotated 90 degrees relative to the first one so that motion information can be obtained simultaneously in two directions. This reduces the acquisition time by a factor of two as compared to the traditional CSPAMM, in which two separate imaging sequences are applied per acquisition. With the application of OCSPAMM, the effect of tag fading encountered in SPAMM tagging due to Tl relaxation is mitigated and tag deformations can be visualized for the entire cardiac cycle, including diastolic phases. A multilevel B-spline fitting method (MBS) has been proposed which incorporates phase-based displacement information for accurate calculation of 2D motion and strain from tagged MRI [6, 7]. The proposed method combines the advantages of continuity and smoothness of MBS, and makes use of phase information derived from tagged MR images. Compared to previous 2D B-spline-based deformation analysis methods, MBS has the following advantages: 1) It can simultaneously achieve a smooth deformation while accurately approximating the given data set; 2) Computationally, it is very fast; and 3) It can produce more accurate deformation results. Since the tag intersections (intersections between two tag lines) can be extracted accurately and are more or less distributed evenly over the myocardium, MBS has proven effective for 2D cardiac motion tracking. To derive phase-based displacements, 2D HARP and SinMod analysis techniques [8,9] were employed. By producing virtual tags from HARP /SinMod and calculating intersections of virtual tag lines, more data points are obtained. In the reference frame, virtual tag lines are the isoparametric curves of an undeformed 2D B-spline model. In subsequent frames, the locations of intersections of virtual tag lines over the myocardium are updated with phase-based displacement. The advantage of the technique is that in acquiring denser myocardial displacements, it uses both real and virtual tag line intersections. It is fast and more accurate than 2D HARP and SinMod tracking. A novel 3D sine wave modeling (3D SinMod) approach for automatic analysis of 3D cardiac deformations has been proposed [10]. An accelerated 3D complementary spatial modulation of magnetization (CSPAMM) tagging technique [11] was used to acquire complete 3D+t tagged MR data sets of the whole heart (3 dynamic CSPAMM tagged MRI volume with tags in different orientations), in-vivo, in 54 heart beats and within 3 breath-holds. In 3D SinMod, the intensity distribution around each pixel is modeled as a cosine wave front. The principle behind 3D SinMod tracking is that both phase and frequency for each voxel are determined directly from the frequency analysis and the displacement is calculated from the quotient of phase difference and local frequency. The deformation fields clearly demonstrate longitudinal shortening during systole. The contraction of the LV base towards the apex as well as the torsional motion between basal and apical slices is clearly observable from the displacements. 3D SinMod can automatically process the image data to derive measures of motion, deformations, and strains between consecutive pair of tagged volumes in 17 seconds. Therefore, comprehensive 4D imaging and postprocessing for determination of ventricular function is now possible in under 10 minutes. For validation of 3D SinMod, 7 3D+t CSPAMM data sets of healthy subjects have been processed. Comparison of mid-wall contour deformations and circumferential shortening results by 3D SinMod showed good agreement with those by 3D HARP. Tag lines tracked by the proposed technique were also compared with manually delineated ones. The average errors calculated for the systolic phase of the cardiac cycles were in the sub-pixel range

    Three-dimensional model-based analysis of vascular and cardiac images

    Get PDF
    This thesis is concerned with the geometrical modeling of organs to perform medical image analysis tasks. The thesis is divided in two main parts devoted to model linear vessel segments and the left ventricle of the heart, respectively. Chapters 2 to 4 present different aspects of a model-based technique for semi-automated quantification of linear vessel segments from 3-D Magnetic Resonance Angiography (MRA). Chapter 2 is concerned with a multiscale filter for the enhancement of vessels in 2-D and 3-D angiograms. Chapter 3 applies the filter developed in Chapter 2 to determine the central vessel axis in 3-D MRA images. This procedure is initialized using an efficient user interaction technique that naturally incorporates the knowledge of the operator about the vessel of interest. Also in this chapter, a linear vessel model is used to recover the position of the vessel wall in order to carry out an accurate quantitative analysis of vascular morphology. Prior knowledge is provided in two main forms: a cylindrical model introduces a shape prior while prior knowledge on the image acquisition (type of MRA technique) is used to define an appropriate vessel boundary criterion. In Chapter 4 an extensive in vitro and in vivo evaluation of the algorithm introduced in Chapter 3 is described. Chapters 5 to 7 change the focus to 3D cardiac image analysis from Magnetic Resonance Imaging. Chapter 5 presents an extensive survey, a categorization and a critical review of the field of cardiac modeling. Chapter 6 and Chapter 7 present successive refinements of a method for building statistical models of shape variability with particular emphasis on cardiac modeling. The method is based on an elastic registration method using hierarchical free-form deformations. A 3D shape model of the left and right ventricles of the heart was constructed. This model contains both the average shape of these organs as well as their shape variability. The methodology presented in the last two chapters could also be applied to other anatomical structures. This has been illustrated in Chapter 6 with examples of geometrical models of the nucleus caudate and the radius

    Computer-aided detection of wall motion abnormalities in cardiac MRI

    Get PDF
    With the increasing prevalence and hospitalization rate of ischaemic heart disease, an explosive growth of diagnostic imaging for ischaemia is ongoing. Clinical decision making on revascularization procedures requires reliable viability assessment to assure long-term patient survival and to elevate cost effectiveness of the therapy and treatment. As such, the demand is increasing for a computer-assisted diagnosis (CAD) method for ischaemic heart disease that supports clinicians with an objective analysis of infarct severity, a viability assessment or a prediction of potential functional improvement before performing revascularization. The goal of this thesis was to explore novel mechanisms that can be used for CAD in ischaemic heart disease, particularly through wall motion analysis from cardiac MR images. Existing diagnostic treatment of wall motion analysis from cardiac MR relies on visual wall motion scoring, which suffers from inter- and intra-observer variability. To minimize this variability, the automated method must contain essential knowledge on how the heart contracts normally. This enables automatic quantification of regional abnormal wall motion, detection of segments with contractile reserve and prediction of functional improvement in stress.1. Bontius Stichting inz. Doelfonds beeldverwerking, 2. Foundation Imago, 3. ASCI research school, and 4. Library of the University of Leiden.UBL - phd migration 201

    Generative Interpretation of Medical Images

    Get PDF

    Characterising pattern asymmetry in pigmented skin lesions

    Get PDF
    Abstract. In clinical diagnosis of pigmented skin lesions asymmetric pigmentation is often indicative of melanoma. This paper describes a method and measures for characterizing lesion symmetry. The estimate of mirror symmetry is computed first for a number of axes at different degrees of rotation with respect to the lesion centre. The statistics of these estimates are the used to assess the overall symmetry. The method is applied to three different lesion representations showing the overall pigmentation, the pigmentation pattern, and the pattern of dermal melanin. The best measure is a 100% sensitive and 96% specific indicator of melanoma on a test set of 33 lesions, with a separate training set consisting of 66 lesions

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    A survey of the application of soft computing to investment and financial trading

    Get PDF

    Spacelab Science Results Study

    Get PDF
    Beginning with OSTA-1 in November 1981 and ending with Neurolab in March 1998, a total of 36 Shuttle missions carried various Spacelab components such as the Spacelab module, pallet, instrument pointing system, or mission peculiar experiment support structure. The experiments carried out during these flights included astrophysics, solar physics, plasma physics, atmospheric science, Earth observations, and a wide range of microgravity experiments in life sciences, biotechnology, materials science, and fluid physics which includes combustion and critical point phenomena. In all, some 764 experiments were conducted by investigators from the U.S., Europe, and Japan. The purpose of this Spacelab Science Results Study is to document the contributions made in each of the major research areas by giving a brief synopsis of the more significant experiments and an extensive list of the publications that were produced. We have also endeavored to show how these results impacted the existing body of knowledge, where they have spawned new fields, and if appropriate, where the knowledge they produced has been applied
    corecore