1,108 research outputs found

    SInC: An accurate and fast error-model based simulator for SNPs, Indels and CNVs coupled with a read generator for short-read sequence data

    Get PDF
    We report SInC (SNV, Indel and CNV) simulator and read generator, an open-source tool capable of simulating biological variants taking into account a platform-specific error model. SInC is capable of simulating and generating single- and paired-end reads with user-defined insert size with high efficiency compared to the other existing tools. SInC, due to its multi-threaded capability during read generation, has a low time footprint. SInC is currently optimised to work in limited infrastructure setup and can efficiently exploit the commonly used quad-core desktop architecture to simulate short sequence reads with deep coverage for large genomes. Sinc can be downloaded from https://sourceforge.net/projects/sincsimulator/

    SOAP3-dp: Fast, Accurate and Sensitive GPU-based Short Read Aligner

    Get PDF
    To tackle the exponentially increasing throughput of Next-Generation Sequencing (NGS), most of the existing short-read aligners can be configured to favor speed in trade of accuracy and sensitivity. SOAP3-dp, through leveraging the computational power of both CPU and GPU with optimized algorithms, delivers high speed and sensitivity simultaneously. Compared with widely adopted aligners including BWA, Bowtie2, SeqAlto, GEM and GPU-based aligners including BarraCUDA and CUSHAW, SOAP3-dp is two to tens of times faster, while maintaining the highest sensitivity and lowest false discovery rate (FDR) on Illumina reads with different lengths. Transcending its predecessor SOAP3, which does not allow gapped alignment, SOAP3-dp by default tolerates alignment similarity as low as 60 percent. Real data evaluation using human genome demonstrates SOAP3-dp's power to enable more authentic variants and longer Indels to be discovered. Fosmid sequencing shows a 9.1 percent FDR on newly discovered deletions. SOAP3-dp natively supports BAM file format and provides a scoring scheme same as BWA, which enables it to be integrated into existing analysis pipelines. SOAP3-dp has been deployed on Amazon-EC2, NIH-Biowulf and Tianhe-1A.Comment: 21 pages, 6 figures, submitted to PLoS ONE, additional files available at "https://www.dropbox.com/sh/bhclhxpoiubh371/O5CO_CkXQE". Comments most welcom

    Towards Better Understanding of Artifacts in Variant Calling from High-Coverage Samples

    Full text link
    Motivation: Whole-genome high-coverage sequencing has been widely used for personal and cancer genomics as well as in various research areas. However, in the lack of an unbiased whole-genome truth set, the global error rate of variant calls and the leading causal artifacts still remain unclear even given the great efforts in the evaluation of variant calling methods. Results: We made ten SNP and INDEL call sets with two read mappers and five variant callers, both on a haploid human genome and a diploid genome at a similar coverage. By investigating false heterozygous calls in the haploid genome, we identified the erroneous realignment in low-complexity regions and the incomplete reference genome with respect to the sample as the two major sources of errors, which press for continued improvements in these two areas. We estimated that the error rate of raw genotype calls is as high as 1 in 10-15kb, but the error rate of post-filtered calls is reduced to 1 in 100-200kb without significant compromise on the sensitivity. Availability: BWA-MEM alignment: http://bit.ly/1g8XqRt; Scripts: https://github.com/lh3/varcmp; Additional data: https://figshare.com/articles/Towards_better_understanding_of_artifacts_in_variating_calling_from_high_coverage_samples/981073Comment: Published versio

    TreeToReads - a pipeline for simulating raw reads from phylogenies.

    Get PDF
    BackgroundUsing phylogenomic analysis tools for tracking pathogens has become standard practice in academia, public health agencies, and large industries. Using the same raw read genomic data as input, there are several different approaches being used to infer phylogenetic tree. These include many different SNP pipelines, wgMLST approaches, k-mer algorithms, whole genome alignment and others; each of these has advantages and disadvantages, some have been extensively validated, some are faster, some have higher resolution. A few of these analysis approaches are well-integrated into the regulatory process of US Federal agencies (e.g. the FDA's SNP pipeline for tracking foodborne pathogens). However, despite extensive validation on benchmark datasets and comparison with other pipelines, we lack methods for fully exploring the effects of multiple parameter values in each pipeline that can potentially have an effect on whether the correct phylogenetic tree is recovered.ResultsTo resolve this problem, we offer a program, TreeToReads, which can generate raw read data from mutated genomes simulated under a known phylogeny. This simulation pipeline allows direct comparisons of simulated and observed data in a controlled environment. At each step of these simulations, researchers can vary parameters of interest (e.g., input tree topology, amount of sequence divergence, rate of indels, read coverage, distance of reference genome, etc) to assess the effects of various parameter values on correctly calling SNPs and reconstructing an accurate tree.ConclusionsSuch critical assessments of the accuracy and robustness of analytical pipelines are essential to progress in both research and applied settings

    CLEVER: Clique-Enumerating Variant Finder

    Full text link
    Next-generation sequencing techniques have facilitated a large scale analysis of human genetic variation. Despite the advances in sequencing speeds, the computational discovery of structural variants is not yet standard. It is likely that many variants have remained undiscovered in most sequenced individuals. Here we present a novel internal segment size based approach, which organizes all, including also concordant reads into a read alignment graph where max-cliques represent maximal contradiction-free groups of alignments. A specifically engineered algorithm then enumerates all max-cliques and statistically evaluates them for their potential to reflect insertions or deletions (indels). For the first time in the literature, we compare a large range of state-of-the-art approaches using simulated Illumina reads from a fully annotated genome and present various relevant performance statistics. We achieve superior performance rates in particular on indels of sizes 20--100, which have been exposed as a current major challenge in the SV discovery literature and where prior insert size based approaches have limitations. In that size range, we outperform even split read aligners. We achieve good results also on real data where we make a substantial amount of correct predictions as the only tool, which complement the predictions of split-read aligners. CLEVER is open source (GPL) and available from http://clever-sv.googlecode.com.Comment: 30 pages, 8 figure

    GATK hard filtering: tunable parameters to improve variant calling for next generation sequencing targeted gene panel data

    Get PDF
    BACKGROUND: NGS technology represents a powerful alternative to the standard Sanger sequencing in the context of clinical setting. The proprietary software that are generally used for variant calling often depend on preset parameters that may not fit in a satisfactory manner for different genes. GATK, which is widely used in the academic world, is rich in parameters for variant calling. However the self-adjusting parameter calibration of GATK requires data from a large number of exomes. When these are not available, which is the standard condition of a diagnostic laboratory, the parameters must be set by the operator (hard filtering). The aim of the present paper was to set up a procedure to assess the best parameters to be used in the hard filtering of GATK. This was pursued by using classification trees on true and false variants from simulated sequences of a real dataset data. RESULTS: We simulated two datasets, with different coverages, including all the sequence alterations identified in a real dataset according to their observed frequencies. Simulated sequences were aligned with standard protocols and then regression trees were built up to identify the most reliable parameters and cutoff values to discriminate true and false variant calls. Moreover, we analyzed flanking sequences of region presenting a high rate of false positive calls observing that such sequences present a low complexity make up. CONCLUSIONS: Our results showed that GATK hard filtering parameter values can be tailored through a simulation study based-on the DNA region of interest to ameliorate the accuracy of the variant calling

    A cancer cell-line titration series for evaluating somatic classification.

    Get PDF
    BackgroundAccurate detection of somatic single nucleotide variants and small insertions and deletions from DNA sequencing experiments of tumour-normal pairs is a challenging task. Tumour samples are often contaminated with normal cells confounding the available evidence for the somatic variants. Furthermore, tumours are heterogeneous so sub-clonal variants are observed at reduced allele frequencies. We present here a cell-line titration series dataset that can be used to evaluate somatic variant calling pipelines with the goal of reliably calling true somatic mutations at low allele frequencies.ResultsCell-line DNA was mixed with matched normal DNA at 8 different ratios to generate samples with known tumour cellularities, and exome sequenced on Illumina HiSeq to depths of >300Ă—. The data was processed with several different variant calling pipelines and verification experiments were performed to assay >1500 somatic variant candidates using Ion Torrent PGM as an orthogonal technology. By examining the variants called at varying cellularities and depths of coverage, we show that the best performing pipelines are able to maintain a high level of precision at any cellularity. In addition, we estimate the number of true somatic variants undetected as cellularity and coverage decrease.ConclusionsOur cell-line titration series dataset, along with the associated verification results, was effective for this evaluation and will serve as a valuable dataset for future somatic calling algorithm development. The data is available for further analysis at the European Genome-phenome Archive under accession number EGAS00001001016. Data access requires registration through the International Cancer Genome Consortium's Data Access Compliance Office (ICGC DACO)
    • …
    corecore