1,998 research outputs found

    Modelling & Improving Flow Establishment in RSVP

    Get PDF
    RSVP has developed as a key component for the evolving Internet, and in particular for the Integrated Services Architecture. Therefore, RSVP performance is crucially important; yet this has been little studied up till now. In this paper, we target one of the most important aspects of RSVP: its ability to establish flows. We first identify the factors influencing the performance of the protocol by modelling the establishment mechanism. Then, we propose a Fast Establishment Mechanism (FEM) aimed at speeding up the set-up procedure in RSVP. We analyse FEM by means of simulation, and show that it offers improvements to the performance of RSVP over a range of likely circumstances

    Resource management in IP-based radio access networks

    Get PDF
    IP is being considered to be used in the Radio Access Network (RAN) of UMTS. It is of paramount importance to be able to provide good QoS guarantees to real time services in such an IP-based RAN. QoS in IP networks is most efficiently provided with Differentiated services (Diffserv). However, currently Diffserv mainly specifies Per Hop Behaviors (PHB). Proper mechanisms for admission control and resource reservation have not yet been defined. A new resource management concept in the IP-based RAN is needed to offer QoS guarantees to real time services. We investigate the current Diffserv mechanisms and contribute to development of a new resource management protocol. We focus on the load control algorithm [9], which is an attempt to solve the problem of admission control and resource reservation in IP-based networks. In this document we present some load control issues and propose to enhance the load control protocol with the Measurement Based Admission Control (MBAC) concept. With this enhancement the traffic load in the IP-based RAN can be estimated, since the ingress router in the network path can be notified by marking packets with the resource state information. With this knowledge, the ingress router can perform admission control to keep the IP-based RAN stable with a high utilization even in overload situations

    Congestion control mechanisms within MPLS networks

    Get PDF
    PhDAbstract not availabl

    Explicit congestion control algorithms for available bit rate services in asynchronous transfer mode networks

    Get PDF
    Congestion control of available bit rate (ABR) services in asynchronous transfer mode (ATM) networks has been the recent focus of the ATM Forum. The focus of this dissertation is to study the impact of queueing disciplines on ABR service congestion control, and to develop an explicit rate control algorithm. Two queueing disciplines, namely, First-In-First-Out (FIFO) and per-VC (virtual connection) queueing, are examined. Performance in terms of fairness, throughput, cell loss rate, buffer size and network utilization are benchmarked via extensive simulations. Implementation complexity analysis and trade-offs associated with each queueing implementation are addressed. Contrary to the common belief, our investigation demonstrates that per-VC queueing, which is costlier and more complex, does not necessarily provide any significant improvement over simple FIFO queueing. A new ATM switch algorithm is proposed to complement the ABR congestion control standard. The algorithm is designed to work with the rate-based congestion control framework recently recommended by the ATM Forum for ABR services. The algorithm\u27s primary merits are fast convergence, high throughput, high link utilization, and small buffer requirements. Mathematical analysis is done to show that the algorithm converges to the max-min fair allocation rates in finite time, and the convergence time is proportional to the distinct number of fair allocations and the round-trip delays in the network. At the steady state, the algorithm operates without causing any oscillations in rates. The algorithm does not require any parameter tuning, and proves to be very robust in a large ATM network. The impact of ATM switching and ATM layer congestion control on the performance of TCP/IP traffic is studied and the results are presented. The study shows that ATM layer congestion control improves the performance of TCP/IP traffic over ATM, and implementing the proposed switch algorithm drastically reduces the required switch buffer requirements. In order to validate claims, many benchmark ATM networks are simulated, and the performance of the switch is evaluated in terms of fairness, link utilization, response time, and buffer size requirements. In terms of performance and complexity, the algorithm proposed here offers many advantages over other proposed algorithms in the literature

    An Energy-conscious Transport Protocol for Multi-hop Wireless Networks

    Full text link
    We present a transport protocol whose goal is to reduce power consumption without compromising delivery requirements of applications. To meet its goal of energy efficiency, our transport protocol (1) contains mechanisms to balance end-to-end vs. local retransmissions; (2) minimizes acknowledgment traffic using receiver regulated rate-based flow control combined with selected acknowledgements and in-network caching of packets; and (3) aggressively seeks to avoid any congestion-based packet loss. Within a recently developed ultra low-power multi-hop wireless network system, extensive simulations and experimental results demonstrate that our transport protocol meets its goal of preserving the energy efficiency of the underlying network.Defense Advanced Research Projects Agency (NBCHC050053
    • …
    corecore