184 research outputs found

    First results on the systematic search of land surface temperature anomalies as earthquakes precursors

    Get PDF
    Every year, earthquakes cause thousands of casualties and high economic losses. For example, in the time frame from 1998 to 2018, the total number of casualties due to earthquakes was larger than 846 thousand people, and the recorded economic losses were about USD 661 billion. At present, there are no earthquake precursors that can be used to trigger a warning. However, some studies have analyzed land surface temperature (LST) anomalies as a potential earthquake precursor. In this study, a large database of global LST data from the Geostationary Operational Environmental Satellite (GOES) and AQUA satellites during the whole year 2020 has been used to study the LST anomalies in the areas affected by earthquakes. A total of 1350 earthquakes with a magnitude larger than M4 were analyzed. Two methods widely used in the literature have been used to detect LST anomalies in the detrended LST time series: the interquartile (IQT) method and the standard deviation (STD). To the authors’ knowledge, it is the first time that the confusion matrix (CM), the receiver operating characteristic curve (ROC), and some other figures of merit (FoM) are used to assess and optimize the performance of the methods, and to select the optimum combination that could be used as a proxy for their occurrence. A positive anomaly was found a few days before the studied earthquakes, followed by the LST decrease after the event. Further studies over larger regions and more extended periods will be needed to consolidate these encouraging results.This work was sponsored by project “GENESIS: GNSS Environmental and Societal Missions—Subproject UPC”, Grant PID2021-126436OB-C21, sponsored by MCIN/AEI/10.13039/501100011033/ and EU ERDF “A way to do Europe”. Badr-Eddine Boudriki Semlali received support in the form of an FI grant: 2021 FI_B 00471 from Generalitat de Catalunya—FI AGAUR 2021.Peer ReviewedPostprint (published version

    Near-Real-Time Global Biomass Burning Emissions Product from Geostationary Satellite Constellation

    Get PDF
    Near-real-time estimates of biomass burning emissions are crucial for air quality monitoring and forecasting. We present here the first near-real-time global biomass burning emission product from geostationary satellites (GBBEP-Geo) produced from satellite-derived fire radiative power (FRP) for individual fire pixels. Specifically, the FRP is retrieved using WF_ABBA V65 (wildfire automated biomass burning algorithm) from a network of multiple geostationary satellites. The network consists of two Geostationary Operational Environmental Satellites (GOES) which are operated by the National Oceanic and Atmospheric Administration, the Meteosat second-generation satellites (Meteosat-09) operated by the European Organisation for the Exploitation of Meteorological Satellites, and the Multifunctional Transport Satellite (MTSAT) operated by the Japan Meteorological Agency. These satellites observe wildfires at an interval of 15–30 min. Because of the impacts from sensor saturation, cloud cover, and background surface, the FRP values are generally not continuously observed. The missing observations are simulated by combining the available instantaneous FRP observations within a day and a set of representative climatological diurnal patterns of FRP for various ecosystems. Finally, the simulated diurnal variation in FRP is applied to quantify biomass combustion and emissions in individual fire pixels with a latency of 1 day. By analyzing global patterns in hourly biomass burning emissions in 2010, we find that peak fire season varied greatly and that annual wildfires burned 1.33 × 1012 kg dry mass, released 1.27 × 1010 kg of PM2.5 (particulate mass for particles with diameter \u3c2.5 μm) and 1.18 × 1011kg of CO globally (excluding most parts of boreal Asia, the Middle East, and India because of no coverage from geostationary satellites). The biomass burning emissions were mostly released from forest and savanna fires in Africa, South America, and North America. Evaluation of emission result reveals that the GBBEP-Geo estimates are comparable with other FRP-derived estimates in Africa, while the results are generally smaller than most of the other global products that were derived from burned area and fuel loading. However, the daily emissions estimated from GOES FRP over the United States are generally consistent with those modeled from GOES burned area and MODIS (Moderate Resolution Imaging Spectroradiometer) fuel loading, which produces an overall bias of 5.7% and a correlation slope of 0.97 ± 0.2. It is expected that near-real-time hourly emissions from GBBEP-Geo could provide a crucial component for atmospheric and chemical transport modelers to forecast air quality and weather conditions

    Data Fusion and Synergy of Active and Passive Remote Sensing; An application for Freeze Thaw Detections

    Full text link
    There has been a recent evolvement in the field of remote sensing after increase of number satellites and sensors data which could be fused to produce new data and products. These efforts are mainly focused on using of simultaneous observations from different platforms with different spatial and temporal resolutions. The research dissertation aims to enhance the synergy use of active and passive microwave observations and examine the results in detection land freeze and thaw (FT) predictions. Freeze thaw cycles particularly in high-latitude regions have a crucial role in many applications such as agriculture, biogeochemical transitions, hydrology and ecosystem studies. The dielectric change between frozen ice and melted water can dramatically affect the brightness temperature (TB) signal when water transits from the liquid to the solid phase which makes satellite-based microwave remote sensing unique for characterizing the surface freeze thaw status. Passive microwave (PMW) sensors with coarse resolution (about 25 km) but more frequent observations (at least twice a day and more frequent in polar regions) have been successfully utilized to define surface state in terms of freeze and thaw in the past. Alternatively, active microwave (AMW) sensors provide much higher spatial resolution (about 100 m or less) though with less temporal resolution (each 12 days). Therefore, an integration of microwave data coming from different sensors may provide a more complete estimation of land freeze thaw state. In this regard, the overarching goal of this research is to explore estimating high spatiotemporal freeze and thaw states using the combination of passive and active microwave observations. To obtain a high temporal resolution TB, this study primarily builds an improved diurnal variation of land surface temperature from integration of infrared sensors. In the next step, a half an hourly diurnal cycle of TB based on fusion of different passive sensors is estimated. It should be mentioned that each instrument has its own footprint, resolution, viewing angle, as well as frequency and consequently their data need to be harmonized in order to be combined. Later, data from an AMW sensor with fine spatial resolution are merged and compared to the corresponding passive data in order to find a relation between TB and backscatter data. Subsequently, PMW TB map can be downscaled to a higher spatial resolution or AMW backscatter timeseries can be generalized to high temporal resolution. Eventually, the final high spatiotemporal resolution TB product is used to examine the freeze thaw state for case studies areas in Northern latitudes

    Earth observations from DSCOVR EPIC instrument

    Full text link
    The National Oceanic and Atmospheric Administration (NOAA) Deep Space Climate Observatory (DSCOVR) spacecraft was launched on 11 February 2015 and in June 2015 achieved its orbit at the first Lagrange point (L1), 1.5 million km from Earth toward the sun. There are two National Aeronautics and Space Administration (NASA) Earth-observing instruments on board: the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR). The purpose of this paper is to describe various capabilities of the DSCOVR EPIC instrument. EPIC views the entire sunlit Earth from sunrise to sunset at the backscattering direction (scattering angles between 168.5° and 175.5°) with 10 narrowband filters: 317, 325, 340, 388, 443, 552, 680, 688, 764, and 779 nm. We discuss a number of preprocessing steps necessary for EPIC calibration including the geolocation algorithm and the radiometric calibration for each wavelength channel in terms of EPIC counts per second for conversion to reflectance units. The principal EPIC products are total ozone (O3) amount, scene reflectivity, erythemal irradiance, ultraviolet (UV) aerosol properties, sulfur dioxide (SO2) for volcanic eruptions, surface spectral reflectance, vegetation properties, and cloud products including cloud height. Finally, we describe the observation of horizontally oriented ice crystals in clouds and the unexpected use of the O2 B-band absorption for vegetation properties.The NASA GSFC DSCOVR project is funded by NASA Earth Science Division. We gratefully acknowledge the work by S. Taylor and B. Fisher for help with the SO2 retrievals and Marshall Sutton, Carl Hostetter, and the EPIC NISTAR project for help with EPIC data. We also would like to thank the EPIC Cloud Algorithm team, especially Dr. Gala Wind, for the contribution to the EPIC cloud products. (NASA Earth Science Division)Accepted manuscrip

    Observational needs of sea surface temperature

    Get PDF
    Sea surface temperature (SST) is a fundamental physical variable for understanding, quantifying and predicting complex interactions between the ocean and the atmosphere. Such processes determine how heat from the sun is redistributed across the global oceans, directly impacting large- and small-scale weather and climate patterns. The provision of daily maps of global SST for operational systems, climate modeling and the broader scientific community is now a mature and sustained service coordinated by the Group for High Resolution Sea Surface Temperature (GHRSST) and the CEOS SST Virtual Constellation (CEOS SST-VC). Data streams are shared, indexed, processed, quality controlled, analyzed, and documented within a Regional/Global Task Sharing (R/GTS) framework, which is implemented internationally in a distributed manner. Products rely on a combination of low-Earth orbit infrared and microwave satellite imagery, geostationary orbit infrared satellite imagery, and in situ data from moored and drifting buoys, Argo floats, and a suite of independent, fully characterized and traceable in situ measurements for product validation (Fiducial Reference Measurements, FRM). Research and development continues to tackle problems such as instrument calibration, algorithm development, diurnal variability, derivation of high-quality skin and depth temperatures, and areas of specific interest such as the high latitudes and coastal areas. In this white paper, we review progress versus the challenges we set out 10 years ago in a previous paper, highlight remaining and new research and development challenges for the next 10 years (such as the need for sustained continuity of passive microwave SST using a 6.9 GHz channel), and conclude with needs to achieve an integrated global high-resolution SST observing system, with focus on satellite observations exploited in conjunction with in situ SSTs. The paper directly relates to the theme of Data Information Systems and also contributes to Ocean Observing Governance and Ocean Technology and Networks within the OceanObs2019 objectives. Applications of SST contribute to all the seven societal benefits, covering Discovery; Ecosystem Health & Biodiversity; Climate Variability & Change; Water, Food, & Energy Security; Pollution & Human Health; Hazards and Maritime Safety; and the Blue Economy

    Biomass Burning in the Conterminous United States: A Comparison and Fusion of Active Fire Observations from Polar-Orbiting and Geostationary Satellites for Emissions Estimation

    Get PDF
    Biomass burning is an important source of atmospheric greenhouse gases and aerosol emissions that significantly influence climate and air quality. Estimation of biomassburning emissions (BBE) has been limited to the conventional method in which parameters (i.e., burned area and fuel load) can be challenging to quantify accurately. Recent studies have demonstrated that the rate of biomass combustion is a linear function of fire radiative power (FRP), the instantaneous radiative energy released from actively burning fires, which provides a novel pathway to estimate BBE. To obtain accurate and timely BBE estimates for near real-time applications (i.e., air quality forecast), the satellite FRP-based method first requires a reliable biomass combustion coefficient that converts fire radiative energy (FRE), the temporal integration of FRP, to biomass consumption. The combustion coefficient is often derived in controlled small-scale fire experiments and is assumed a constant, whereas the coefficient based on satellite retrievals of FRP and atmospheric optical depth is suggested varying in a wide range. Undoubtedly, highly variable combustion coefficient results in large uncertainty of BBE estimates. Further, the FRP-based method also depends on high-spatiotemporalresolution FRP retrievals that, however, are not available in any active fire products from current polar-orbiting and geostationary satellites due to their sampling limitations. To address these challenges, this study first investigates the combustion coefficient for landscape-scale wildfires in the Conterminous United States (CONUS) by comparing FRE from the polar-orbiting Moderate Resolution Imaging Spectroradiometer (MODIS) and the Geostationary Operational Environmental Satellite system (GOES) with the Landsat-based biomass consumption. The results confirms that biomass consumption is a linear function of FRE for wildfires. The derived combustion coefficient is 0.374 kg · MJ- 1 for GOES FRE, 0.266 kg · MJ-1 for MODIS FRE, and 0.320 kg · MJ-1 considering both GOES and MODIS FRE in the CONUS. Limited sensitivity analyses indicate that the combustion coefficient varies from 0.301 to 0.458 kg · MJ-1, which is similar to the reported values in small fire experiments. Then, this study reconstructs diurnal FRP cycle to derive high-spatiotemporal-resolution FRP by fusing MODIS and GOES FRP retrievals and estimates hourly BBE at a 0.25°×0.3125° grid across the CONUS. The results indicate that the reconstructed diurnal FRP cycle varies significantly in magnitude and shape among 45 CONUS ecosystems. In the CONUS, the biomass burning annually releases approximately 690 Gg particulate matter (smaller than 2.5 μm in diameter, PM2.5). The diurnal-FRP-cycle-based BBE estimates compare well with BBE derived from Landsat burned areas in the western CONUS and with the hourly carbon monoxide emissions simulated using a biogeochemical model over the Rim Fire in California. Moreover, the BBE estimates show a similar seasonal variation to six existing BBE inventories but with variable magnitude. Finally, this study examines potential improvements in fires characterization capability of the Visible Infrared Imaging Radiometer Suite (VIIRS), which is the follow-on sensor of the MODIS sensor, for integrating VIIRS FRP retrievals into the FRP-based method for BBE estimation in future work. The results indicate that the VIIRS fire characterization capability is similar across swath, whereas MODIS is strongly dependent on satellite view zenith angle. VIIRS FRP is generally comparable with contemporaneous MODIS FRP at continental scales and in most fire clusters. At 1-degree grid cells, the FRP difference between the two sensors is, on average, approximately 20% in fire-prone regions but varies significantly in fire-limited regions. In summary, this study attempts to enhance the capability of the FRP-based method by addressing challenges in its two parameters (combustion coefficient and FRP), which should help to improve estimation of BBE and advance our understanding of the effects of BBE on climate and air quality. This research has resulted in two published papers and one paper to be submitted to a peer-reviewed journal so far

    Machine Learning Approach to Retrieving Physical Variables from Remotely Sensed Data

    Full text link
    Scientists from all over the world make use of remotely sensed data from hundreds of satellites to better understand the Earth. However, physical measurements from an instrument is sometimes missing either because the instrument hasn\u27t been launched yet or the design of the instrument omitted a particular spectral band. Measurements received from the instrument may also be corrupt due to malfunction in the detectors on the instrument. Fortunately, there are machine learning techniques to estimate the missing or corrupt data. Using these techniques we can make use of the available data to its full potential. We present work on four different problems where the use of machine learning techniques helps to extract more information from available data. We demonstrate how missing or corrupt spectral measurements from a sensor can be accurately interpolated from existing spectral observations. Sometimes this requires data fusion from multiple sensors at different spatial and spectral resolution. The reconstructed measurements can then be used to develop products useful to scientists, such as cloud-top pressure, or produce true color imagery for visualization. Additionally, segmentation and image processing techniques can help solve classification problems important for ocean studies, such as the detection of clear-sky over ocean for a sea surface temperature product. In each case, we provide detailed analysis of the problem and empirical evidence that these problems can be solved effectively using machine learning techniques

    Estimating High Spatial Resolution Clear-Sky Land Surface Longwave Radiation Budget from MODIS and GOES Data

    Get PDF
    The surface radiation budget (SRB) is important in addressing a variety of scientific and application issues related to climate trends, hydrological and biogeophysical modeling, and agriculture. The three longwave components of SRB are surface downwelling, upwelling, and net longwave radiation (LWDN, LWUP, and LWNT). Existing surface longwave radiation budget (SLRB) datasets have coarse spatial resolution and their accuracy needs to be greatly improved. This study develops new hybrid methods for estimating instantaneous clear-sky high spatial resolution land LWDN and LWUP from the Moderate Resolution Imaging Spectroradiometer (MODIS, 1km) and the Geostationary Operational Environmental Satellites (GOES, 2-10 km) data. The hybrid methods combine extensive radiation transfer (physical) and statistical analysis (statistical) and share the same general framework. LWNT is derived from LWDN and LWUP. This study is the first effort to estimate SLRB using MODIS 1 km data. The new hybrid methods are unique in at least two other aspects. First, the radiation transfer simulation accounted for land surface emissivity effect. Second, the surface pressure effect in LWDN was considered explicitly by incorporating surface elevation in the statistical models. Nonlinear models were developed using the simulated databases to estimate LWDN from MODIS TOA radiance and surface elevation. Artificial Neural Network (ANN) models were developed to estimate LWUP from MODIS TOA radiance. The LWDN and LWUP models can explain more than 93.6% and 99.6% of variations in the simulated databases, respectively. Preliminary study indicates that similar hybrid methods can be developed to estimate LWDN and LWUP from the current GOES-12 Sounder data and the future GOES-R data. The new hybrid methods and alternative methods were evaluated using two years of ground measurements at six validation sites from the Surface Radiation Budget Network (SURFRAD). Validation results indicate the hybrid methods outperform alternative methods. The mean RMSEs of MODIS-derived LWDN, LWUP, and LWNT using the hybrid methods are 16.88, 15.23, and 17.30 W/m2. The RMSEs of GOES-12 Sounder-derived LWDN and LWUP are smaller than 23.70 W/m2. The high spatial resolution MODIS and GOES SLRB derived in this study is more accurate than existing datasets and can be used to support high resolution numerical models

    ESTIMATING LAND SURFACE ALBEDO FROM SATELLITE DATA

    Get PDF
    Land surface albedo, defined as the ratio of the surface reflected incoming and outgoing solar radiation, is one of the key geophysical variables controlling the surface radiation budget. Surface shortwave albedo is widely used to drive climate and hydrological models. During the last several decades, remotely sensed surface albedo products have been generated through satellite-acquired data. However, some problems exist in those products due to instrument measurement inaccuracies and the failure of current retrieving procedures, which have limited their applications. More significantly, it has been reported that some albedo products from different satellite sensors do not agree with each other and some even show the opposite long term trend regionally and globally. The emergence of some advanced sensors newly launched or planned in the near future will provide better capabilities for estimating land surface albedo with fine resolution spatially and/or temporally. Traditional methods for estimating the surface shortwave albedo from satellite data include three steps: first, the satellite observations are converted to surface directional reflectance using the atmospheric correction algorithms; second, the surface bidirectional reflectance distribution function (BRDF) models are inverted through the fitting of the surface reflectance composites; finally, the shortwave albedo is calculated from the BRDF through the angular and spectral integration. However, some problems exist in these algorithms, including: 1) "dark-object" based atmospheric correction methods which make it difficult to estimate albedo accurately over non-vegetated or sparsely vegetated area; 2) the long-time composite albedo products cannot satisfy the needs of weather forecasting or land surface modeling when rapid changes such as snow fall/melt, forest fire/clear-cut and crop harvesting occur; 3) the diurnal albedo signature cannot be estimated in the current algorithms due to the Lambertian approximation in some of the atmospheric correction algorithms; 4) prior knowledge has not been effectively incorporated in the current algorithms; and 5) current observation accumulation methods make it difficult to obtain sufficient observations when persistent clouds exist within the accumulation window. To address those issues and to improve the satellite surface albedo estimations, a method using an atmospheric radiative transfer procedure with surface bidirectional reflectance modeling will be applied to simultaneously retrieve land surface albedo and instantaneous aerosol optical depth (AOD). This study consists of three major components. The first focuses on the atmospheric radiative transfer procedure with surface reflectance modeling. Instead of executing atmospheric correction first and then fitting surface reflectance in the previous satellite albedo retrieving procedure, the atmospheric properties (e.g., AOD) and surface properties (e.g., BRDF) are estimated simultaneously to reduce the uncertainties produced in separating the entire radiative transfer process. Data from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua are used to evaluate the performance of this albedo estimation algorithm. Good agreement is reached between the albedo estimates from the proposed algorithm and other validation datasets. The second part is to assess the effectiveness of the proposed algorithm, analyze the error sources, and further apply the algorithm on geostationary satellite - the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard Meteosat Second Generation (MSG). Extensive validations on surface albedo estimations from MSG/SEVIRI observations are conducted based on the comparison with ground measurements and other satellite products. Diurnal changes and day-to-day changes in surface albedo are accurately captured by the proposed algorithm. The third part of this study is to develop a spatially and temporally complete, continuous, and consistent albedo maps through a data fusion method. Since the prior information (or climatology) of albedo/BRDF plays a vital role in controlling the retrieving accuracy in the optimization method, currently available multiple land surface albedo products will be integrated using the Multi-resolution Tree (MRT) models to mitigate problems such as data gaps, systematic bias or low information-noise ratio due to instrument failure, persistent clouds from the viewing direction and algorithm limitations. The major original contributions of this study are as follows: 1) this is the first algorithm for the simultaneous estimations of surface albedo/reflectance and instantaneous AOD by using the atmospheric radiative transfer with surface BRDF modeling for both polar-orbiting and geostationary satellite data; 2) a radiative transfer with surface BRDF models is used to derive surface albedo and directional reflectance from MODIS and SEVIRI observations respectively; 3) extensive validations are made on the comparison between the albedo and AOD retrievals, and the satellite products from other sensors; 4) the slightly modified algorithm has been adopted to be the operational algorithm of Advanced Baseline Imager (ABI) in the future Geostationary Operational Environmental Satellite-R Series (GOES-R) program for estimating land surface albedo; 5) a framework of using MRT is designed to integrate multiple satellite albedo products at different spatial scales to build the spatially and temporally complete, continuous, and consistent albedo maps as the prior knowledge in the retrieving procedure

    Spatial Downscaling of GOES-R Land Surface Temperature over Urban Regions: A Case Study for New York City

    Full text link
    The surface urban heat island (SUHI) effect is among the major environmental issues encountered in urban regions. To better predict the dynamics of the SUHI and its impacts on extreme heat events, an accurate characterization of the surface energy balance in urban regions is needed. However, the ability to improve understanding of the surface energy balance is limited by the heterogeneity of surfaces in urban areas. This study aims to enhance the understanding of the urban surface energy budget through an innovation in the use of land surface temperature (LST) observations from remote sensing satellites. A LST database with 5–min temporal and 30–m spatial resolution is developed by spatial downscaling of the Geostationary Operational Environmental Satellites—R (GOES–R) series LST product over New York City (NYC). The new downscaling method, known as the Spatial Downscaling Method (SDM), benefits from the fine spatial resolution of Landsat–8 and high temporal resolution of GOES–R, and considers the temporal variation in LST for each land cover type separately. Preliminary results show that the SDM can reproduce the temporal and spatial variability of LST over NYC reasonably well and the downscaled LST has a spatial root mean square error (RMSE) of the order of 2 K as compared to the independent Landsat–8 observations. The SDM shows smaller RMSE of 1.93 K over the tree canopy land cover, whereas RMSE is 2.19 K for built–up areas. The overall results indicate that the SDM has potential to estimate LST at finer spatial and temporal scales over urban regions
    corecore