15 research outputs found

    Novel Nonlinear Optics and Quantum Optics Approaches for Ultrasound-Modulated Optical Tomography in Soft Biological Tissue

    Get PDF
    Optical imaging of soft biological tissue is highly desirable since it is nonionizing and provides sensitive contrast information which enables the detection of physiological functions and abnormalities, including potentially early cancer detection. However, due to the diffusive nature of light in soft biological tissue, it is difficult to achieve simultaneously good spatial resolution and good imaging depth with pure optical imaging modalities. This work focuses on the ultrasound-modulated optical tomography (UOT): a hybrid technique which combines the advantages of ultrasonic resolution and optical contrast. In this technique, focused ultrasound and optical radiation of high temporal coherence are simultaneously applied to soft biological tissue. The intensity of the sideband, or ultrasound ‗tagged‘ photons depends on the optical absorption in the region of interest where the ultrasound is focused. Demodulation of the optical speckle pattern yields the intensity of tagged photons for each location of the ultrasonic focal spot. Thus UOT yields an image with spatial resolution of the focused ultrasound — typically submillimeter — whose contrast is related to local optical absorption and the diffusive properties of light in the organ. Thus it extends all the advantages of optical imaging deep into highly scattering tissue. However lack of efficient tagged light detection techniques has so far prevented ultrasound-modulated optical tomography from achieving maturity. The signal-to-noise ratio (SNR) and imaging speed are two of the most important figures of merit and need further improvement for UOT to become widely applicable. In the first part of this work, nonlinear optics detection methods have been implemented to demodulate the ―tagged‖ photons. The most common of these is photorefractive (PR) two wave mixing (TWM) interferometry, which is a time-domain filtering technique. When used for UOT, it is found that this approach extracts not only optical properties but also mechanical properties for the area of interest. To improve on TWM, PR four wave mixing (FWM) experiments were performed to read out only the modulated light and at the same time strongly suppressing the ‗untagged‘ light. Spectral-hole burning (SHB) in a rare-earth-ion-doped crystal has been developed for UOT more recently. Experiments in Tm3 :Y3Al5O12 (Tm:YAG) show the outstanding features of SHB: large angle acceptance (etendue), light speckle processing in parallel (insensitive to the diffusive light nature) and real-time signal collection (immune to light speckle decorrelation). With the help of advanced laser stabilization techniques, two orders of magnitude improvement of SNR have been achieved in a persistent SHB material (Pr^3 :Y2SiO5) compared to Tm:YAG. Also slow light with PSHB further reduces noise in Pr:YSO UOT that is caused by polarization leakage by performing time-domain filtering

    Computational Depth-resolved Imaging and Metrology

    Get PDF
    In this thesis, the main research challenge boils down to extracting 3D spatial information of an object from 2D measurements using light. Our goal is to achieve depth-resolved tomographic imaging of transparent or semi-transparent 3D objects, and to perform topography characterization of rough surfaces. The essential tool we used is computational imaging, where depending on the experimental scheme, often indirect measurements are taken, and tailored algorithms are employed to perform image reconstructions. The computational imaging approach enables us to relax the hardware requirement of an imaging system, which is essential when using light in the EUV and x-ray regimes, where high-quality optics are not readily available. In this thesis, visible and infrared light sources are used, where computational imaging also offers several advantages. First of all, it often leads to a simple, flexible imaging system with low cost. In the case of a lensless configuration, where no lenses are involved in the final image-forming stage between the object and the detector, aberration-free image reconstructions can be obtained. More importantly, computational imaging provides quantitative reconstructions of scalar electric fields, enabling phase imaging, numerical refocus, as well as 3D imaging

    Optical Coherence Tomography and Its Non-medical Applications

    Get PDF
    Optical coherence tomography (OCT) is a promising non-invasive non-contact 3D imaging technique that can be used to evaluate and inspect material surfaces, multilayer polymer films, fiber coils, and coatings. OCT can be used for the examination of cultural heritage objects and 3D imaging of microstructures. With subsurface 3D fingerprint imaging capability, OCT could be a valuable tool for enhancing security in biometric applications. OCT can also be used for the evaluation of fastener flushness for improving aerodynamic performance of high-speed aircraft. More and more OCT non-medical applications are emerging. In this book, we present some recent advancements in OCT technology and non-medical applications

    Microscopy Conference 2021 (MC 2021) - Proceedings

    Get PDF
    Das Dokument enthÀlt die Kurzfassungen der BeitrÀge aller Teilnehmer an der Mikroskopiekonferenz "MC 2021"

    Advanced Photothermal Optical Coherence Tomography (PT-OCT) for Quantification of Tissue Composition

    Get PDF
    Optical coherence tomography (OCT) is an imaging technique that forms 2D or 3D images of tissue structures with micron-level resolution. Today, OCT systems are widely used in medicine, especially in the fields of ophthalmology, interventional cardiology, oncology, and dermatology. Although OCT images provide insightful structural information of tissues, these images are not specific to the chemical composition of the tissue. Yet, chemical tissue composition is frequently relevant to the stage of a disease (e.g., atherosclerosis), leading to poor diagnostic performance of structural OCT images. Photo-thermal optical coherence tomography (PT-OCT) is a functional extension of OCT with the potential to overcome this shortcoming by overlaying the 3D structural images of OCT with depth-resolved light absorption information. Potentially, signal analysis of the light absorption maps can be used to obtain refined insight into the chemical composition of tissue. Such analysis, however, is complex because the underlying physics of PT-OCT is multifactorial. Aside from tissue chemical composition, the optical, thermal, and mechanical properties of tissue affect PT-OCT signals; system/instrumentation parameters also influence PT-OCT signals. As such, obtaining refined insight into tissue chemical composition requires in-depth research aimed at answering several key unknowns and questions about this technique. The goal of this dissertation is to generate in-depth knowledge on sample and system parameters affecting PT-OCT signals, to develop strategies for optimal detection of a molecule of interest (MOI) and potentially for its quantification, and to improve the imaging rate of the system. The following items are major outcomes of this dissertation: 1- Generated comprehensive theory that discovers relations between sample/tissue properties and experimental conditions and their multifactorial effects on PT-OCT signals. 2- Developed system and experimentation strategies for detection of multiple molecules of interest with high specificity. 3- Generated optimized machine learning-powered model, in light of the above two outcomes, for automated depth-resolved interpretation of tissue composition from PT-OCT images. 4- Increased the imaging rate of PT-OCT by orders of magnitude by introducing a new variant of PT-OCT based on pulsed photothermal excitation. 5- Developed algorithms for signal denoising and improving the quality of received signals and the contrast in images which in return enables faster PT-OCT imaging
    corecore