1,007 research outputs found

    Artificial Intelligence in the Diagnosis of Hepatocellular Carcinoma: A Systematic Review.

    Get PDF
    Hepatocellular carcinoma ranks fifth amongst the most common malignancies and is the third most common cause of cancer-related death globally. Artificial Intelligence is a rapidly growing field of interest. Following the PRISMA reporting guidelines, we conducted a systematic review to retrieve articles reporting the application of AI in HCC detection and characterization. A total of 27 articles were included and analyzed with our composite score for the evaluation of the quality of the publications. The contingency table reported a statistically significant constant improvement over the years of the total quality score (p = 0.004). Different AI methods have been adopted in the included articles correlated with 19 articles studying CT (41.30%), 20 studying US (43.47%), and 7 studying MRI (15.21%). No article has discussed the use of artificial intelligence in PET and X-ray technology. Our systematic approach has shown that previous works in HCC detection and characterization have assessed the comparability of conventional interpretation with machine learning using US, CT, and MRI. The distribution of the imaging techniques in our analysis reflects the usefulness and evolution of medical imaging for the diagnosis of HCC. Moreover, our results highlight an imminent need for data sharing in collaborative data repositories to minimize unnecessary repetition and wastage of resources

    The Role of Radiomics and AI Technologies in the Segmentation, Detection, and Management of Hepatocellular Carcinoma

    Get PDF
    Hepatocellular carcinoma (HCC) is the most common primary hepatic neoplasm. Thanks to recent advances in computed tomography (CT) and magnetic resonance imaging (MRI), there is potential to improve detection, segmentation, discrimination from HCC mimics, and monitoring of therapeutic response. Radiomics, artificial intelligence (AI), and derived tools have already been applied in other areas of diagnostic imaging with promising results. In this review, we briefly discuss the current clinical applications of radiomics and AI in the detection, segmentation, and management of HCC. Moreover, we investigate their potential to reach a more accurate diagnosis of HCC and to guide proper treatment planning

    Assessment of the response of hepatocellular carcinoma to interventional radiology treatments

    Get PDF
    According to Barcelona Clinic Liver Cancer (BCLC) guidelines, interventional radiology procedures are valuable treatment options for many hepatocellular carcinomas (HCCs) that are not amenable to resection or transplantation. Accurate assessment of the efficacy of therapies at earlier stages enables completion of treatment, optimal follow-up and to prevent potentially unnecessary treatments, side effects and costly failure. The goal of this review is to summarize and describe the radiological strategies that have been proposed to predict survival and to stratify HCC responses after interventional radiology therapies. New techniques currently in development are also described

    Recent Advances in Machine Learning Applied to Ultrasound Imaging

    Get PDF
    Machine learning (ML) methods are pervading an increasing number of fields of application because of their capacity to effectively solve a wide variety of challenging problems. The employment of ML techniques in ultrasound imaging applications started several years ago but the scientific interest in this issue has increased exponentially in the last few years. The present work reviews the most recent (2019 onwards) implementations of machine learning techniques for two of the most popular ultrasound imaging fields, medical diagnostics and non-destructive evaluation. The former, which covers the major part of the review, was analyzed by classifying studies according to the human organ investigated and the methodology (e.g., detection, segmentation, and/or classification) adopted, while for the latter, some solutions to the detection/classification of material defects or particular patterns are reported. Finally, the main merits of machine learning that emerged from the study analysis are summarized and discussed. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Medical Image Analytics (Radiomics) with Machine/Deeping Learning for Outcome Modeling in Radiation Oncology

    Full text link
    Image-based quantitative analysis (radiomics) has gained great attention recently. Radiomics possesses promising potentials to be applied in the clinical practice of radiotherapy and to provide personalized healthcare for cancer patients. However, there are several challenges along the way that this thesis will attempt to address. Specifically, this thesis focuses on the investigation of repeatability and reproducibility of radiomics features, the development of new machine/deep learning models, and combining these for robust outcomes modeling and their applications in radiotherapy. Radiomics features suffer from robustness issues when applied to outcome modeling problems, especially in head and neck computed tomography (CT) images. These images tend to contain streak artifacts due to patients’ dental implants. To investigate the influence of artifacts for radiomics modeling performance, we firstly developed an automatic artifact detection algorithm using gradient-based hand-crafted features. Then, comparing the radiomics models trained on ‘clean’ and ‘contaminated’ datasets. The second project focused on using hand-crafted radiomics features and conventional machine learning methods for the prediction of overall response and progression-free survival for Y90 treated liver cancer patients. By identifying robust features and embedding prior knowledge in the engineered radiomics features and using bootstrapped LASSO to select robust features, we trained imaging and dose based models for the desired clinical endpoints, highlighting the complementary nature of this information in Y90 outcomes prediction. Combining hand-crafted and machine learnt features can take advantage of both expert domain knowledge and advanced data-driven approaches (e.g., deep learning). Thus, we proposed a new variational autoencoder network framework that modeled radiomics features, clinical factors, and raw CT images for the prediction of intrahepatic recurrence-free and overall survival for hepatocellular carcinoma (HCC) patients in this third project. The proposed approach was compared with widely used Cox proportional hazard model for survival analysis. Our proposed methods achieved significant improvement in terms of the prediction using the c-index metric highlighting the value of advanced modeling techniques in learning from limited and heterogeneous information in actuarial prediction of outcomes. Advances in stereotactic radiation therapy (SBRT) has led to excellent local tumor control with limited toxicities for HCC patients, but intrahepatic recurrence still remains prevalent. As an extension of the third project, we not only hope to predict the time to intrahepatic recurrence, but also the location where the tumor might recur. This will be clinically beneficial for better intervention and optimizing decision making during the process of radiotherapy treatment planning. To address this challenging task, firstly, we proposed an unsupervised registration neural network to register atlas CT to patient simulation CT and obtain the liver’s Couinaud segments for the entire patient cohort. Secondly, a new attention convolutional neural network has been applied to utilize multimodality images (CT, MR and 3D dose distribution) for the prediction of high-risk segments. The results showed much improved efficiency for obtaining segments compared with conventional registration methods and the prediction performance showed promising accuracy for anticipating the recurrence location as well. Overall, this thesis contributed new methods and techniques to improve the utilization of radiomics for personalized radiotherapy. These contributions included new algorithm for detecting artifacts, a joint model of dose with image heterogeneity, combining hand-crafted features with machine learnt features for actuarial radiomics modeling, and a novel approach for predicting location of treatment failure.PHDApplied PhysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163092/1/liswei_1.pd

    Deep Learning Techniques for Liver Tumor Recognition in Ultrasound Images

    Get PDF
    Cancer is one of the most severe diseases nowadays. Thus, tumor detection in a non-invasive and accurate manner is a challenging subject. Among these tumors, liver cancer is one of the most dangerous, being very common. Hepatocellular Carcinoma (HCC) is the most frequent malignant liver tumor. The golden standard for diagnosing HCC is mainly the biopsy, however invasive and risky, leading to infections, respectively to the spreading of the tumor through the body. We conceive computerized techniques for abdominal tumor recognition within medical images. Formerly, traditional, texture-based methods were involved for this purpose. Both classical texture analysis methods, as well as advanced, original texture analysis techniques, based on superior order statistics, were involved. The superior order Gray Level Cooccurrence Matrix (GLCM), as well as the Textural Microstructure Cooccurrence Matrices (TMCM) were employed and assessed. Recently, deep learning techniques based on Convolutional Neural Networks (CNN), their fusions with the conventional techniques, as well as their combinations among themselves, were assessed in the approached field. We present the most relevant aspects of this study in the current paper

    A systematic review of natural language processing applied to radiology reports

    Get PDF
    NLP has a significant role in advancing healthcare and has been found to be key in extracting structured information from radiology reports. Understanding recent developments in NLP application to radiology is of significance but recent reviews on this are limited. This study systematically assesses recent literature in NLP applied to radiology reports. Our automated literature search yields 4,799 results using automated filtering, metadata enriching steps and citation search combined with manual review. Our analysis is based on 21 variables including radiology characteristics, NLP methodology, performance, study, and clinical application characteristics. We present a comprehensive analysis of the 164 publications retrieved with each categorised into one of 6 clinical application categories. Deep learning use increases but conventional machine learning approaches are still prevalent. Deep learning remains challenged when data is scarce and there is little evidence of adoption into clinical practice. Despite 17% of studies reporting greater than 0.85 F1 scores, it is hard to comparatively evaluate these approaches given that most of them use different datasets. Only 14 studies made their data and 15 their code available with 10 externally validating results. Automated understanding of clinical narratives of the radiology reports has the potential to enhance the healthcare process but reproducibility and explainability of models are important if the domain is to move applications into clinical use. More could be done to share code enabling validation of methods on different institutional data and to reduce heterogeneity in reporting of study properties allowing inter-study comparisons. Our results have significance for researchers providing a systematic synthesis of existing work to build on, identify gaps, opportunities for collaboration and avoid duplication

    Application of Artificial Intelligence to Ultrasonography

    Get PDF
    The use of artificial intelligence (AI) technology in medicine has gained considerable attention, although its application in ultrasound medicine is still in its infancy. Deep learning, the main algorithm of AI technology, can be applied to intelligent ultrasound picture detection and classification. Describe the application status of AI in ultrasound imaging, including thyroid, breast, and liver disease applications. The merging of AI and ultrasound imaging can increase the accuracy and specificity of ultrasound diagnosis and decrease the percentage of incorrect diagnoses

    Tissue recognition for contrast enhanced ultrasound videos

    Get PDF

    Dynamic And Quantitative Radiomics Analysis In Interventional Radiology

    Get PDF
    Interventional Radiology (IR) is a subspecialty of radiology that performs invasive procedures driven by diagnostic imaging for predictive and therapeutic purpose. The development of artificial intelligence (AI) has revolutionized the industry of IR. Researchers have created sophisticated models backed by machine learning algorithms and optimization methodologies for image registration, cellular structure detection and computer-aided disease diagnosis and prognosis predictions. However, due to the incapacity of the human eye to detect tiny structural characteristics and inter-radiologist heterogeneity, conventional experience-based IR visual evaluations may have drawbacks. Radiomics, a technique that utilizes machine learning, offers a practical and quantifiable solution to this issue. This technology has been used to evaluate the heterogeneity of malignancies that are difficult to detect by the human eye by creating an automated pipeline for the extraction and analysis of high throughput computational imaging characteristics from radiological medical pictures. However, it is a demanding task to directly put radiomics into applications in IR because of the heterogeneity and complexity of medical imaging data. Furthermore, recent radiomics studies are based on static images, while many clinical applications (such as detecting the occurrence and development of tumors and assessing patient response to chemotherapy and immunotherapy) is a dynamic process. Merely incorporating static features cannot comprehensively reflect the metabolic characteristics and dynamic processes of tumors or soft tissues. To address these issues, we proposed a robust feature selection framework to manage the high-dimensional small-size data. Apart from that, we explore and propose a descriptor in the view of computer vision and physiology by integrating static radiomics features with time-varying information in tumor dynamics. The major contributions to this study include: Firstly, we construct a result-driven feature selection framework, which could efficiently reduce the dimension of the original feature set. The framework integrates different feature selection techniques to ensure the distinctiveness, uniqueness, and generalization ability of the output feature set. In the task of classification hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) in primary liver cancer, only three radiomics features (chosen from more than 1, 800 features of the proposed framework) can obtain an AUC of 0.83 in the independent dataset. Besides, we also analyze features’ pattern and contributions to the results, enhancing clinical interpretability of radiomics biomarkers. Secondly, we explore and build a pulmonary perfusion descriptor based on 18F-FDG whole-body dynamic PET images. Our major novelties include: 1) propose a physiology-and-computer-vision-interpretable descriptor construction framework by the decomposition of spatiotemporal information into three dimensions: shades of grey levels, textures, and dynamics. 2) The spatio-temporal comparison of pulmonary descriptor intra and inter patients is feasible, making it possible to be an auxiliary diagnostic tool in pulmonary function assessment. 3) Compared with traditional PET metabolic biomarker analysis, the proposed descriptor incorporates image’s temporal information, which enables a better understanding of the time-various mechanisms and detection of visual perfusion abnormalities among different patients. 4) The proposed descriptor eliminates the impact of vascular branching structure and gravity effect by utilizing time warping algorithms. Our experimental results showed that our proposed framework and descriptor are promising tools to medical imaging analysis
    corecore