3,775 research outputs found

    Aerial Vehicle Tracking by Adaptive Fusion of Hyperspectral Likelihood Maps

    Full text link
    Hyperspectral cameras can provide unique spectral signatures for consistently distinguishing materials that can be used to solve surveillance tasks. In this paper, we propose a novel real-time hyperspectral likelihood maps-aided tracking method (HLT) inspired by an adaptive hyperspectral sensor. A moving object tracking system generally consists of registration, object detection, and tracking modules. We focus on the target detection part and remove the necessity to build any offline classifiers and tune a large amount of hyperparameters, instead learning a generative target model in an online manner for hyperspectral channels ranging from visible to infrared wavelengths. The key idea is that, our adaptive fusion method can combine likelihood maps from multiple bands of hyperspectral imagery into one single more distinctive representation increasing the margin between mean value of foreground and background pixels in the fused map. Experimental results show that the HLT not only outperforms all established fusion methods but is on par with the current state-of-the-art hyperspectral target tracking frameworks.Comment: Accepted at the International Conference on Computer Vision and Pattern Recognition Workshops, 201

    Advancements in Multi-temporal Remote Sensing Data Analysis Techniques for Precision Agriculture

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    On the Use of Unmanned Aerial Systems for Environmental Monitoring

    Get PDF
    Environmental monitoring plays a central role in diagnosing climate and management impacts on natural and agricultural systems; enhancing the understanding of hydrological processes; optimizing the allocation and distribution of water resources; and assessing, forecasting, and even preventing natural disasters. Nowadays, most monitoring and data collection systems are based upon a combination of ground-based measurements, manned airborne sensors, and satellite observations. These data are utilized in describing both small- and large-scale processes, but have spatiotemporal constraints inherent to each respective collection system. Bridging the unique spatial and temporal divides that limit current monitoring platforms is key to improving our understanding of environmental systems. In this context, Unmanned Aerial Systems (UAS) have considerable potential to radically improve environmental monitoring. UAS-mounted sensors offer an extraordinary opportunity to bridge the existing gap between field observations and traditional air- and space-borne remote sensing, by providing high spatial detail over relatively large areas in a cost-effective way and an entirely new capacity for enhanced temporal retrieval. As well as showcasing recent advances in the field, there is also a need to identify and understand the potential limitations of UAS technology. For these platforms to reach their monitoring potential, a wide spectrum of unresolved issues and application-specific challenges require focused community attention. Indeed, to leverage the full potential of UAS-based approaches, sensing technologies, measurement protocols, postprocessing techniques, retrieval algorithms, and evaluation techniques need to be harmonized. The aim of this paper is to provide an overview of the existing research and applications of UAS in natural and agricultural ecosystem monitoring in order to identify future directions, applications, developments, and challengespublishersversionPeer reviewe

    Analyzing high resolution topography for advancing the understanding of mass and energy transfer through landscapes: A review

    No full text
    International audienceThe study of mass and energy transfer across landscapes has recently evolved to comprehensive considerations acknowledging the role of biota and humans as geomorphic agents, as well as the importance of small-scale landscape features. A contributing and supporting factor to this evolution is the emergence over the last two decades of technologies able to acquire high resolution topography (HRT) (meter and sub-meter resolution) data. Landscape features can now be captured at an appropriately fine spatial resolution at which surface processes operate; this has revolutionized the way we study Earth-surface processes. The wealth of information contained in HRT also presents considerable challenges. For example, selection of the most appropriate type of HRT data for a given application is not trivial. No definitive approach exists for identifying and filtering erroneous or unwanted data, yet inappropriate filtering can create artifacts or eliminate/distort critical features. Estimates of errors and uncertainty are often poorly defined and typically fail to represent the spatial heterogeneity of the dataset, which may introduce bias or error for many analyses. For ease of use, gridded products are typically preferred rather than the more information-rich point cloud representations. Thus many users take advantage of only a fraction of the available data, which has furthermore been subjected to a series of operations often not known or investigated by the user. Lastly, standard HRT analysis work-flows are yet to be established for many popular HRT operations, which has contributed to the limited use of point cloud data.In this review, we identify key research questions relevant to the Earth-surface processes community within the theme of mass and energy transfer across landscapes and offer guidance on how to identify the most appropriate topographic data type for the analysis of interest. We describe the operations commonly performed from raw data to raster products and we identify key considerations and suggest appropriate work-flows for each, pointing to useful resources and available tools. Future research directions should stimulate further development of tools that take advantage of the wealth of information contained in the HRT data and address the present and upcoming research needs such as the ability to filter out unwanted data, compute spatially variable estimates of uncertainty and perform multi-scale analyses. While we focus primarily on HRT applications for mass and energy transfer, we envision this review to be relevant beyond the Earth-surface processes community for a much broader range of applications involving the analysis of HRT

    Super-Resolution for Overhead Imagery Using DenseNets and Adversarial Learning

    Full text link
    Recent advances in Generative Adversarial Learning allow for new modalities of image super-resolution by learning low to high resolution mappings. In this paper we present our work using Generative Adversarial Networks (GANs) with applications to overhead and satellite imagery. We have experimented with several state-of-the-art architectures. We propose a GAN-based architecture using densely connected convolutional neural networks (DenseNets) to be able to super-resolve overhead imagery with a factor of up to 8x. We have also investigated resolution limits of these networks. We report results on several publicly available datasets, including SpaceNet data and IARPA Multi-View Stereo Challenge, and compare performance with other state-of-the-art architectures.Comment: 9 pages, 9 figures, WACV 2018 submissio

    Traffic Surveillance and Automated Data Extraction from Aerial Video Using Computer Vision, Artificial Intelligence, and Probabilistic Approaches

    Get PDF
    In transportation engineering, sufficient, reliable, and diverse traffic data is necessary for effective planning, operations, research, and professional practice. Using aerial imagery to achieve traffic surveillance and collect traffic data is one of the feasible ways that is facilitated by the advances of technologies in many related areas. A great deal of aerial imagery datasets are currently available and more datasets are collected every day for various applications. It will be beneficial to make full and efficient use of the attribute rich imagery as a resource for valid and useful traffic data for many applications in transportation research and practice. In this dissertation, a traffic surveillance system that can collect valid and useful traffic data using quality-limited aerial imagery datasets with diverse characteristics is developed. Two novel approaches, which can achieve robust and accurate performance, are proposed and implemented for this system. The first one is a computer vision-based approach, which uses convolutional neural network (CNN) to detect vehicles in aerial imagery and uses features to track those detections. This approach is capable of detecting and tracking vehicles in the aerial imagery datasets with a very limited quality. Experimental results indicate the performance of this approach is very promising and it can achieve accurate measurements for macroscopic traffic data and is also potential for reliable microscopic traffic data. The second approach is a multiple hypothesis tracking (MHT) approach with innovative kinematics and appearance models (KAM). The implemented MHT module is designed to cooperate with the CNN module in order to extend and improve the vehicle tracking system. Experiments are designed based on a meticulously established synthetic vehicle detection datasets, originally induced scale-agonistic property of MHT, and comprehensively identified metrics for performance evaluation. The experimental results not only indicate that the performance of this approach can be very promising, but also provide solutions for some long-standing problems and reveal the impacts of frame rate, detection noise, and traffic configurations as well as the effects of vehicle appearance information on the performance. The experimental results of both approaches prove the feasibility of traffic surveillance and data collection by detecting and tracking vehicles in aerial video, and indicate the direction of further research as well as solutions to achieve satisfactory performance with existing aerial imagery datasets that have very limited quality and frame rates. This traffic surveillance system has the potential to be transformational in how large area traffic data is collected in the future. Such a system will be capable of achieving wide area traffic surveillance and extracting valid and useful traffic data from wide area aerial video captured with a single platfor
    • …
    corecore