1,894 research outputs found

    Deep learning in medical imaging and radiation therapy

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146980/1/mp13264_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146980/2/mp13264.pd

    Challenges and Opportunities of End-to-End Learning in Medical Image Classification

    Get PDF
    Das Paradigma des End-to-End Lernens hat in den letzten Jahren die Bilderkennung revolutioniert, aber die klinische Anwendung hinkt hinterher. Bildbasierte computergestĂŒtzte Diagnosesysteme basieren immer noch weitgehend auf hochtechnischen und domĂ€nen-spezifischen Pipelines, die aus unabhĂ€ngigen regelbasierten Modellen bestehen, welche die Teilaufgaben der Bildklassifikation wiederspiegeln: Lokalisation von auffĂ€lligen Regionen, Merkmalsextraktion und Entscheidungsfindung. Das Versprechen einer ĂŒberlegenen Entscheidungsfindung beim End-to-End Lernen ergibt sich daraus, dass domĂ€nenspezifische Zwangsbedingungen von begrenzter KomplexitĂ€t entfernt werden und stattdessen alle Systemkomponenten gleichzeitig, direkt anhand der Rohdaten, und im Hinblick auf die letztendliche Aufgabe optimiert werden. Die GrĂŒnde dafĂŒr, dass diese Vorteile noch nicht den Weg in die Klinik gefunden haben, d.h. die Herausforderungen, die sich bei der Entwicklung Deep Learning-basierter Diagnosesysteme stellen, sind vielfĂ€ltig: Die Tatsache, dass die GeneralisierungsfĂ€higkeit von Lernalgorithmen davon abhĂ€ngt, wie gut die verfĂŒgbaren Trainingsdaten die tatsĂ€chliche zugrundeliegende Datenverteilung abbilden, erweist sich in medizinische Anwendungen als tiefgreifendes Problem. Annotierte DatensĂ€tze in diesem Bereich sind notorisch klein, da fĂŒr die Annotation eine kostspielige Beurteilung durch Experten erforderlich ist und die Zusammenlegung kleinerer DatensĂ€tze oft durch Datenschutzauflagen und Patientenrechte erschwert wird. DarĂŒber hinaus weisen medizinische DatensĂ€tze drastisch unterschiedliche Eigenschaften im Bezug auf BildmodalitĂ€ten, Bildgebungsprotokolle oder Anisotropien auf, und die oft mehrdeutige Evidenz in medizinischen Bildern kann sich auf inkonsistente oder fehlerhafte Trainingsannotationen ĂŒbertragen. WĂ€hrend die Verschiebung von Datenverteilungen zwischen Forschungsumgebung und RealitĂ€t zu einer verminderten Modellrobustheit fĂŒhrt und deshalb gegenwĂ€rtig als das Haupthindernis fĂŒr die klinische Anwendung von Lernalgorithmen angesehen wird, wird dieser Graben oft noch durch Störfaktoren wie Hardwarelimitationen oder GranularitĂ€t von gegebenen Annotation erweitert, die zu Diskrepanzen zwischen der modellierten Aufgabe und der zugrunde liegenden klinischen Fragestellung fĂŒhren. Diese Arbeit untersucht das Potenzial des End-to-End-Lernens in klinischen Diagnosesystemen und prĂ€sentiert BeitrĂ€ge zu einigen der wichtigsten Herausforderungen, die derzeit eine breite klinische Anwendung verhindern. ZunĂ€chst wird der letzten Teil der Klassifikations-Pipeline untersucht, die Kategorisierung in klinische Pathologien. Wir demonstrieren, wie das Ersetzen des gegenwĂ€rtigen klinischen Standards regelbasierter Entscheidungen durch eine groß angelegte Merkmalsextraktion gefolgt von lernbasierten Klassifikatoren die Brustkrebsklassifikation im MRT signifikant verbessert und eine Leistung auf menschlichem Level erzielt. Dieser Ansatz wird weiter anhand von kardiologischer Diagnose gezeigt. Zweitens ersetzen wir, dem Paradigma des End-to-End Lernens folgend, das biophysikalische Modell, das fĂŒr die Bildnormalisierung in der MRT angewandt wird, sowie die Extraktion handgefertigter Merkmale, durch eine designierte CNN-Architektur und liefern eine eingehende Analyse, die das verborgene Potenzial der gelernten Bildnormalisierung und einen KomplementĂ€rwert der gelernten Merkmale gegenĂŒber den handgefertigten Merkmalen aufdeckt. WĂ€hrend dieser Ansatz auf markierten Regionen arbeitet und daher auf manuelle Annotation angewiesen ist, beziehen wir im dritten Teil die Aufgabe der Lokalisierung dieser Regionen in den Lernprozess ein, um eine echte End-to-End-Diagnose baserend auf den Rohbildern zu ermöglichen. Dabei identifizieren wir eine weitgehend vernachlĂ€ssigte Zwangslage zwischen dem Streben nach der Auswertung von Modellen auf klinisch relevanten Skalen auf der einen Seite, und der Optimierung fĂŒr effizientes Training unter Datenknappheit auf der anderen Seite. Wir prĂ€sentieren ein Deep Learning Modell, das zur Auflösung dieses Kompromisses beitrĂ€gt, liefern umfangreiche Experimente auf drei medizinischen DatensĂ€tzen sowie eine Serie von Toy-Experimenten, die das Verhalten bei begrenzten Trainingsdaten im Detail untersuchen, und publiziren ein umfassendes Framework, das unter anderem die ersten 3D-Implementierungen gĂ€ngiger Objekterkennungsmodelle umfasst. Wir identifizieren weitere Hebelpunkte in bestehenden End-to-End-Lernsystemen, bei denen DomĂ€nenwissen als Zwangsbedingung dienen kann, um die Robustheit von Modellen in der medizinischen Bildanalyse zu erhöhen, die letztendlich dazu beitragen sollen, den Weg fĂŒr die Anwendung in der klinischen Praxis zu ebnen. Zu diesem Zweck gehen wir die Herausforderung fehlerhafter Trainingsannotationen an, indem wir die Klassifizierungskompnente in der End-to-End-Objekterkennung durch Regression ersetzen, was es ermöglicht, Modelle direkt auf der kontinuierlichen Skala der zugrunde liegenden pathologischen Prozesse zu trainieren und so die Robustheit der Modelle gegenĂŒber fehlerhaften Trainingsannotationen zu erhöhen. Weiter adressieren wir die Herausforderung der Input-HeterogenitĂ€ten, mit denen trainierte Modelle konfrontiert sind, wenn sie an verschiedenen klinischen Orten eingesetzt werden, indem wir eine modellbasierte DomĂ€nenanpassung vorschlagen, die es ermöglicht, die ursprĂŒngliche TrainingsdomĂ€ne aus verĂ€nderten Inputs wiederherzustellen und damit eine robuste Generalisierung zu gewĂ€hrleisten. Schließlich befassen wir uns mit dem höchst unsystematischen, aufwendigen und subjektiven Trial-and-Error-Prozess zum Finden von robusten Hyperparametern fĂŒr einen gegebene Aufgabe, indem wir DomĂ€nenwissen in ein Set systematischer Regeln ĂŒberfĂŒhren, die eine automatisierte und robuste Konfiguration von Deep Learning Modellen auf einer Vielzahl von medizinischen Datensetzen ermöglichen. Zusammenfassend zeigt die hier vorgestellte Arbeit das enorme Potenzial von End-to-End Lernalgorithmen im Vergleich zum klinischen Standard mehrteiliger und hochtechnisierter Diagnose-Pipelines auf, und prĂ€sentiert LösungsansĂ€tze zu einigen der wichtigsten Herausforderungen fĂŒr eine breite Anwendung unter realen Bedienungen wie Datenknappheit, Diskrepanz zwischen der vom Modell behandelten Aufgabe und der zugrunde liegenden klinischen Fragestellung, Mehrdeutigkeiten in Trainingsannotationen, oder Verschiebung von DatendomĂ€nen zwischen klinischen Standorten. Diese BeitrĂ€ge können als Teil des ĂŒbergreifende Zieles der Automatisierung von medizinischer Bildklassifikation gesehen werden - ein integraler Bestandteil des Wandels, der erforderlich ist, um die Zukunft des Gesundheitswesens zu gestalten

    Machine learning in orthopedics: a literature review

    Get PDF
    In this paper we present the findings of a systematic literature review covering the articles published in the last two decades in which the authors described the application of a machine learning technique and method to an orthopedic problem or purpose. By searching both in the Scopus and Medline databases, we retrieved, screened and analyzed the content of 70 journal articles, and coded these resources following an iterative method within a Grounded Theory approach. We report the survey findings by outlining the articles\u2019 content in terms of the main machine learning techniques mentioned therein, the orthopedic application domains, the source data and the quality of their predictive performance
    • 

    corecore