116 research outputs found

    LMS Adaptive Filters for Noise Cancellation: A Review

    Get PDF
    This paper reviews the past and the recent research on Adaptive Filter algorithms based on adaptive noise cancellation systems. In many applications of noise cancellation, the change in signal characteristics could be quite fast which requires the utilization of adaptive algorithms that converge rapidly. Algorithms such as LMS and RLS proves to be vital in the noise cancellation are reviewed including principle and recent modifications to increase the convergence rate and reduce the computational complexity for future implementation. The purpose of this paper is not only to discuss various noise cancellation LMS algorithms but also to provide the reader with an overview of the research conducted

    Efficient Adaptive Filter Algorithms Using Variable Tap-length Scheme

    Get PDF
    Today the usage of digital signal processors has increased, where adaptive filter algorithms are now routinely employed in mostly all contemporary devices such as mobile phones, camcorders, digital cameras, and medical monitoring equipment, to name few. The filter tap-length, or the number of taps, is a significant structural parameter of adaptive filters that can influences both the complexity and steady-state performance characteristics of the filter. Traditional implementation of adaptive filtering algorithms presume some fixed filter-length and focus on estimating variable filter\u27s tap-weights parameters according to some pre-determined cost function. Although this approach can be adequate in some applications, it is not the case in more complicated ones as it does not answer the question of filter size (tap-length). This problem can be more apparent when the application involves a change in impulse response, making it hard for the adaptive filter algorithm to achieve best potential performance. A cost-effective approach is to come up with variable tap-length filtering scheme that can search for the optimal length while the filter is adapting its coefficients. In direct form structure filtering, commonly known as a transversal adaptive filter, several schemes were used to estimate the optimum tap-length. Among existing algorithms, pseudo fractional tap-length (FT) algorithm, is of particular interest because of its fast convergence rate and small steady-state error. Lattice structured adaptive filters, on the other hand, have attracted attention recently due to a number of desirable properties. The aim of this research is to develop efficient adaptive filter algorithms that fill the gap where optimal filter structures were not proposed by incorporating the concept of pseudo fractional tap-length (FT) in adaptive filtering algorithms. The contribution of this research include the development of variable length adaptive filter scheme and hence optimal filter structure for the following applications: (1) lattice prediction; (2) Least-Mean-Squares (LMS) lattice system identification; (3) Recursive Least-Squares (RLS) lattice system identification; (4) Constant Modulus Algorithm (CMA) blind equalization. To demonstrate the capability of proposed algorithms, simulations examples are implemented in different experimental conditions, where the results showed noticeable improvement in the context of mean square Error (MSE), as well as in the context of convergence rate of the proposed algorithms with their counterparts adaptive filter algorithms. Simulation results have also proven that with affordable extra computational complexity, an optimization for both of the adaptive filter coefficients and the filter tap-length can be attained

    Adaptive filtering algorithms for noise cancellation

    Get PDF
    Tese de mestrado. Mestrado Integrado em Engenharia Electrotécnica e de Computadores - Major Automação. Faculdade de Engenharia. Universidade do Porto. 201

    Analysis and Evaluation of the Family of Sign Adaptive Algorithms

    Get PDF
    In this thesis, four novel sign adaptive algorithms proposed by the author were analyzed and evaluated for floating-point arithmetic operations. These four algorithms include Sign Regressor Least Mean Fourth (SRLMF), Sign Regressor Least Mean Mixed-Norm (SRLMMN), Normalized Sign Regressor Least Mean Fourth (NSRLMF), and Normalized Sign Regressor Least Mean Mixed-Norm (NSRLMMN). The performance of the latter three algorithms has been analyzed and evaluated for real-valued data only. While the performance of the SRLMF algorithm has been analyzed and evaluated for both cases of real- and complex-valued data. Additionally, four sign adaptive algorithms proposed by other researchers were also analyzed and evaluated for floating-point arithmetic operations. These four algorithms include Sign Regressor Least Mean Square (SRLMS), Sign-Sign Least Mean Square (SSLMS), Normalized Sign-Error Least Mean Square (NSLMS), and Normalized Sign Regressor Least Mean Square (NSRLMS). The performance of the latter three algorithms has been analyzed and evaluated for both cases of real- and complex-valued data. While the performance of the SRLMS algorithm has been analyzed and evaluated for complex-valued data only. The framework employed in this thesis relies on energy conservation approach. The energy conservation framework has been applied uniformly for the evaluation of the performance of the aforementioned eight sign adaptive algorithms proposed by the author and other researchers. In other words, the energy conservation framework stands out as a common theme that runs throughout the treatment of the performance of the aforementioned eight algorithms. Some of the results from the performance evaluation of the four novel sign adaptive algorithms proposed by the author, namely SRLMF, SRLMMN, NSRLMF, and NSRLMMN are as follows. It was shown that the convergence performance of the SRLMF and SRLMMN algorithms for real-valued data was similar to those of the Least Mean Fourth (LMF) and Least Mean Mixed-Norm (LMMN) algorithms, respectively. Moreover, it was also shown that the NSRLMF and NSRLMMN algorithms exhibit a compromised convergence performance for realvalued data as compared to the Normalized Least Mean Fourth (NLMF) and Normalized Least Mean Mixed-Norm (NLMMN) algorithms, respectively. Some misconceptions among biomedical signal processing researchers concerning the implementation of adaptive noise cancelers using the Sign-Error Least Mean Fourth (SLMF), Sign-Sign Least Mean Fourth (SSLMF), and their variant algorithms were also removed. Finally, three of the novel sign adaptive algorithms proposed by the author, namely SRLMF, SRLMMN, and NSRLMF have been successfully employed by other researchers and the author in applications ranging from power quality improvement in the distribution system and multiple artifacts removal from various physiological signals such as ElectroCardioGram (ECG) and ElectroEncephaloGram (EEG)

    Digital signal processing algorithms and structures for adaptive line enhancing

    Get PDF
    Imperial Users onl

    Adaptive noise cancellation using multichannel lattice structure.

    Get PDF
    This thesis presents a multichannel adaptive noise cancellation technique (MCLS) for cancelling the noise over nonlinear transmission channel. The technique applies to the situation in which the reference signal and noisy primary signal are collected simultaneously. The coefficients of the multichannel multiple regression transversal filter are modified adaptively according to the backward prediction error vector generated from the multichannel adaptive lattice predictor. This multichannel adaptive noise cancellation procedure involves the NLMS adaptive algorithm. The performance of the new technique using different types of transmission channels, different types of reference inputs and different types of noise-free primary inputs are examined analytically. The new approach is experimentally shown to have better noise cancellation performance than the existing single-channel adaptive lattice noise cancellation algorithm (SCLS) over nonlinear transmission channel case, especially in low input SNR situation.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2004 .X54. Source: Masters Abstracts International, Volume: 43-01, page: 0288. Adviser: H. K. Kwan. Thesis (M.A.Sc.)--University of Windsor (Canada), 2004

    Wireless Channel Equalization in Digital Communication Systems

    Get PDF
    Our modern society has transformed to an information-demanding system, seeking voice, video, and data in quantities that could not be imagined even a decade ago. The mobility of communicators has added more challenges. One of the new challenges is to conceive highly reliable and fast communication system unaffected by the problems caused in the multipath fading wireless channels. Our quest is to remove one of the obstacles in the way of achieving ultimately fast and reliable wireless digital communication, namely Inter-Symbol Interference (ISI), the intensity of which makes the channel noise inconsequential. The theoretical background for wireless channels modeling and adaptive signal processing are covered in first two chapters of dissertation. The approach of this thesis is not based on one methodology but several algorithms and configurations that are proposed and examined to fight the ISI problem. There are two main categories of channel equalization techniques, supervised (training) and blind unsupervised (blind) modes. We have studied the application of a new and specially modified neural network requiring very short training period for the proper channel equalization in supervised mode. The promising performance in the graphs for this network is presented in chapter 4. For blind modes two distinctive methodologies are presented and studied. Chapter 3 covers the concept of multiple cooperative algorithms for the cases of two and three cooperative algorithms. The select absolutely larger equalized signal and majority vote methods have been used in 2-and 3-algoirithm systems respectively. Many of the demonstrated results are encouraging for further research. Chapter 5 involves the application of general concept of simulated annealing in blind mode equalization. A limited strategy of constant annealing noise is experimented for testing the simple algorithms used in multiple systems. Convergence to local stationary points of the cost function in parameter space is clearly demonstrated and that justifies the use of additional noise. The capability of the adding the random noise to release the algorithm from the local traps is established in several cases
    corecore