33,266 research outputs found

    Comparison of Brain Networks based on Predictive Models of Connectivity

    Full text link
    In this study we adopt predictive modelling to identify simultaneously commonalities and differences in multi-modal brain networks acquired within subjects. Typically, predictive modelling of functional connectomes from structural connectomes explores commonalities across multimodal imaging data. However, direct application of multivariate approaches such as sparse Canonical Correlation Analysis (sCCA) applies on the vectorised elements of functional connectivity across subjects and it does not guarantee that the predicted models of functional connectivity are Symmetric Positive Matrices (SPD). We suggest an elegant solution based on the transportation of the connectivity matrices on a Riemannian manifold, which notably improves the prediction performance of the model. Randomised lasso is used to alleviate the dependency of the sCCA on the lasso parameters and control the false positive rate. Subsequently, the binomial distribution is exploited to set a threshold statistic that reflects whether a connection is selected or rejected by chance. Finally, we estimate the sCCA loadings based on a de-noising approach that improves the estimation of the coefficients. We validate our approach based on resting-state fMRI and diffusion weighted MRI data. Quantitative validation of the prediction performance shows superior performance, whereas qualitative results of the identification process are promising.Comment: 7 pages, 4 figure

    Learning and comparing functional connectomes across subjects

    Get PDF
    Functional connectomes capture brain interactions via synchronized fluctuations in the functional magnetic resonance imaging signal. If measured during rest, they map the intrinsic functional architecture of the brain. With task-driven experiments they represent integration mechanisms between specialized brain areas. Analyzing their variability across subjects and conditions can reveal markers of brain pathologies and mechanisms underlying cognition. Methods of estimating functional connectomes from the imaging signal have undergone rapid developments and the literature is full of diverse strategies for comparing them. This review aims to clarify links across functional-connectivity methods as well as to expose different steps to perform a group study of functional connectomes

    Sparse Predictive Structure of Deconvolved Functional Brain Networks

    Full text link
    The functional and structural representation of the brain as a complex network is marked by the fact that the comparison of noisy and intrinsically correlated high-dimensional structures between experimental conditions or groups shuns typical mass univariate methods. Furthermore most network estimation methods cannot distinguish between real and spurious correlation arising from the convolution due to nodes' interaction, which thus introduces additional noise in the data. We propose a machine learning pipeline aimed at identifying multivariate differences between brain networks associated to different experimental conditions. The pipeline (1) leverages the deconvolved individual contribution of each edge and (2) maps the task into a sparse classification problem in order to construct the associated "sparse deconvolved predictive network", i.e., a graph with the same nodes of those compared but whose edge weights are defined by their relevance for out of sample predictions in classification. We present an application of the proposed method by decoding the covert attention direction (left or right) based on the single-trial functional connectivity matrix extracted from high-frequency magnetoencephalography (MEG) data. Our results demonstrate how network deconvolution matched with sparse classification methods outperforms typical approaches for MEG decoding
    corecore