2,273 research outputs found

    UAV tracking module proposal based on a regulative comparison between manned and unmanned aviation

    Get PDF
    Purpose: The aim of this study is twofold. First is to compare manned and unmanned aviation regulations in the context of ICAO Annexes to identify potential deficiencies in the international UAV legislations. Second is to propose a UAV monitoring module work flow as a solution to identified deficiencies in the international UAV regulations. Design/methodology: In the present study, firstly the regulations used in manned aviation were summarized in the context of ICAO Annexes. Then along with an overview of the use of UAVs, international UAV regulations have been reviewed with a general perspective. In addition, a comparison was made on whether contents of ICAO Annexes find a place in common international UAV regulations in order to understand areas to be developed in the international UAV regulations, and to better understand the different principles between manned and unmanned air transport. In the last section, we present a UAV tracking module (UAVTram) in line with the above-mentioned comparison between manned and unmanned aviation and the identified deficiencies in the international UAV regulations. Findings: The international UAV regulations should be developed on the basis of airport airspace use, detection, liabilities, sanctions of violations, and updating of regulation. Proposed UAVTram has potential to offer real-time tracking and detection of UAVs as a solution to malicious use of UAVs. Research limitations/implications: Our study is not exempt from limitations. Firstly, we didn’t review all UAV regulations because it needs a considerable amount of efforts to check out all the UAV regulations pertinent to different areas of the world. It is the same case for manned aviation as we used only ICAO Annexes to contextually compare with UAV regulations. Practical implications: From the practical perspective, studies introducing new technologies such as systems that help detection of remote pilots causing trouble and agile defense systems will give valuable insights to remove individual UAV threats. Originality/value: We didn’t find any study aiming to compare manned and unmanned aviation rules in search of finding potential deficiencies in the UAV regulations. Our study adopts such an approach. Moreover, our solution proposal here uses Bluetooth 5.0 technology mounted on stationary transmitters which provides more effective range with higher data transfer. Another advantage is that this work is projected to be supported by Turkish civil aviation authority, DGCA. This may accelerate efforts to make required real-time tests.Peer Reviewe

    Lightweight Simulation of Hybrid Aerial- and Ground-based Vehicular Communication Networks

    Full text link
    Cooperating small-scale Unmanned Aerial Vehicles (UAVs) will open up new application fields within next-generation Intelligent Transportation Sytems (ITSs), e.g., airborne near field delivery. In order to allow the exploitation of the potentials of hybrid vehicular scenarios, reliable and efficient bidirectional communication has to be guaranteed in highly dynamic environments. For addressing these novel challenges, we present a lightweight framework for integrated simulation of aerial and ground-based vehicular networks. Mobility and communication are natively brought together using a shared codebase coupling approach, which catalyzes the development of novel context-aware optimization methods that exploit interdependencies between both domains. In a proof-of-concept evaluation, we analyze the exploitation of UAVs as local aerial sensors as well as aerial base stations. In addition, we compare the performance of Long Term Evolution (LTE) and Cellular Vehicle-to-Everything (C-V2X) for connecting the ground- and air-based vehicles

    A Traffic-Aware Approach for Enabling Unmanned Aerial Vehicles (UAVs) in Smart City Scenarios

    Get PDF
    In smart cities, vehicular applications require high computation capabilities and low-latency communication. Edge computing offers promising solutions for addressing these requirements because of several features, such as geo-distribution, mobility, low latency, heterogeneity, and support for real-time interactions. To employ network edges, existing fixed roadside units can be equipped with edge computing servers. Nevertheless, there are situations where additional infrastructure units are required to handle temporary high traffic loads during public events, unexpected weather conditions, or extreme traffic congestion. In such cases, the use of flying roadside units are carried by unmanned aerial vehicles (UAVs), which provide the required infrastructure for supporting traffic applications and improving the quality of service. UAVs can be dynamically deployed to act as mobile edges in accordance with traffic events and congestion conditions. The key benefits of this dynamic approach include: 1) the potential for characterizing the environmental requirements online and performing the deployment accordingly, and 2) the ability to move to another location when necessary. We propose a traffic-aware method for enabling the deployment of UAVs in vehicular environments. Simulation results show that our proposed method can achieve full network coverage under different scenarios without extra communication overhead or delay

    RISKS IDENTIFICATION AND MITIGATION IN UAV APPLICATIONS DEVELOPMENT PROJECTS

    Get PDF
    With the recent advances in aircraft technologies, software, sensors, and communications, Unmanned Aerial Vehicles (UAVs) can offer a wide range of applications. UAVs can play important roles in applications, such as search and rescue, situation awareness in natural disasters, environmental monitoring, and perimeter surveillance. Developing UAV applications involves integrating hardware, software, sensors, and communication components with the UAV’s base system. UAV applications development projects are complex because of the various development stages and the integration complexity of high component. This research addresses the business and technical challenges encountered by UAV applications development and Project Management (PM). It identifies the risks associated with UAV applications development and compares various risk mitigation and management techniques that can be used. The study also investigates the role of Knowledge Management (KM) in reducing and managing risks. Furthermore, this study proposes a KM framework that reduces risks in UAV applications development projects. In addition, the proposed framework relies on KM and text mining techniques to enhance the efficiency of executing these projects
    • …
    corecore