16,576 research outputs found

    Mass-Market Receiver for Static Positioning: Tests and Statistical Analyses

    Get PDF
    Nowadays, there are several low cost GPS receivers able to provide both pseudorange and carrier phase measurements in the L1band, that allow to have good realtime performances in outdoor condition. The present paper describes a set of dedicated tests in order to evaluate the positioning accuracy in static conditions. The quality of the pseudorange and the carrier phase measurements let hope for interesting results. The use of such kind of receiver could be extended to a large number of professional applications, like engineering fields: survey, georeferencing, monitoring, cadastral mapping and cadastral road. In this work, the receivers performance is verified considering a single frequency solution trying to fix the phase ambiguity, when possible. Different solutions are defined: code, float and fix solutions. In order to solve the phase ambiguities different methods are considered. Each test performed is statistically analyzed, highlighting the effects of different factors on precision and accurac

    FLAMINGO – Fulfilling enhanced location accuracy in the mass-market through initial GalileO services

    Get PDF
    This paper discusses FLAMINGO, an initiative that will provide a high accuracy positioning service to be used by mass market applications. The status and future for the initiative are discussed, the required accuracies and other location parameters are described, and the target applications are identified. Finally, the currently achieved accuracies from today’s Smartphones are assessed and presented. FLAMINGO (Fulfilling enhanced Location Accuracy in the Mass-market through Initial GalileO services), part funded through the European GNSS Agency, is a collaborative venture comprising NSL (as lead organization), Telespazio France, University of Nottingham, Rokubun, Thales Alenia Space France, VVA, BQ, ECLEXYS and Blue Dot Solutions. The initiative is developing the infrastructure, solutions and services to enable the use of accurate and precise GNSS within the mass-market, thereby operating predominantly in an urban environment. Whilst mass-market receivers are yet to achieve accuracies below one metre for standard positioning, the introduction of Android raw GNSS measurements and the Broadcom dual frequency chipset (BCM47755), has presented the devices such an opportunity. FLAMINGO will enable and demonstrate the future of high accuracy positioning and navigation information on mass-market devices such as smartphones and Internet of Things (IoT) devices by producing a service delivering accuracies of 50cm (at 95%) and better, employing multi-constellation, PPP and RTK mechanisms, power consumption optimisation techniques. Whereas the Galileo High Accuracy Service targets 10cm precision within professional markets, FLAMINGO targets 30-50cm precision in the mass-market consumer markets. By targeting accuracies of a few decimetres, a range of improved and new applications in diverse market sectors are introduced. These sectors include, but are not limited to, mapping and GIS, autonomous vehicles, AR environments, mobile-location based gaming and people tracking. To obtain such high accuracies with mass market devices, FLAMINGO must overcome several challenges which are technical, operational and environmental. This includes the hardware capabilities of most mass-market devices, where components such as antennas and processors are prioritised for other purposes. We demonstrate that, despite these challenges, FLAMINGO has the potential to meet the accuracy required. Tests with the current Smartphones that provide access to multi-constellation raw measurements (the dual frequency Xiaomi Mi 8 and single frequency Samsung S8 and Huawei P10) demonstrate significant improvements to the PVT solution when processing using both RTK and PPP techniques

    STCP: Receiver-agnostic Communication Enabled by Space-Time Cloud Pointers

    Get PDF
    Department of Electrical and Computer Engineering (Computer Engineering)During the last decade, mobile communication technologies have rapidly evolved and ubiquitous network connectivity is nearly achieved. However, we observe that there are critical situations where none of the existing mobile communication technologies is usable. Such situations are often found when messages need to be delivered to arbitrary persons or devices that are located in a specific space at a specific time. For instance at a disaster scene, current communication methods are incapable of delivering messages of a rescuer to the group of people at a specific area even when their cellular connections are alive because the rescuer cannot specify the receivers of the messages. We name this as receiver-unknown problem and propose a viable solution called SpaceMessaging. SpaceMessaging adopts the idea of Post-it by which we casually deliver our messages to a person who happens to visit a location at a random moment. To enable SpaceMessaging, we realize the concept of posting messages to a space by implementing cloud-pointers at a cloud server to which messages can be posted and from which messages can fetched by arbitrary mobile devices that are located at that space. Our Android-based prototype of SpaceMessaging, which particularly maps a cloud-pointer to a WiFi signal fingerprint captured from mobile devices, demonstrates that it first allows mobile devices to deliver messages to a specific space and to listen to the messages of a specific space in a highly accurate manner (with more than 90% of Recall)

    Inferring transportation modes from GPS trajectories using a convolutional neural network

    Full text link
    Identifying the distribution of users' transportation modes is an essential part of travel demand analysis and transportation planning. With the advent of ubiquitous GPS-enabled devices (e.g., a smartphone), a cost-effective approach for inferring commuters' mobility mode(s) is to leverage their GPS trajectories. A majority of studies have proposed mode inference models based on hand-crafted features and traditional machine learning algorithms. However, manual features engender some major drawbacks including vulnerability to traffic and environmental conditions as well as possessing human's bias in creating efficient features. One way to overcome these issues is by utilizing Convolutional Neural Network (CNN) schemes that are capable of automatically driving high-level features from the raw input. Accordingly, in this paper, we take advantage of CNN architectures so as to predict travel modes based on only raw GPS trajectories, where the modes are labeled as walk, bike, bus, driving, and train. Our key contribution is designing the layout of the CNN's input layer in such a way that not only is adaptable with the CNN schemes but represents fundamental motion characteristics of a moving object including speed, acceleration, jerk, and bearing rate. Furthermore, we ameliorate the quality of GPS logs through several data preprocessing steps. Using the clean input layer, a variety of CNN configurations are evaluated to achieve the best CNN architecture. The highest accuracy of 84.8% has been achieved through the ensemble of the best CNN configuration. In this research, we contrast our methodology with traditional machine learning algorithms as well as the seminal and most related studies to demonstrate the superiority of our framework.Comment: 12 pages, 3 figures, 7 tables, Transportation Research Part C: Emerging Technologie

    Group-In: Group Inference from Wireless Traces of Mobile Devices

    Full text link
    This paper proposes Group-In, a wireless scanning system to detect static or mobile people groups in indoor or outdoor environments. Group-In collects only wireless traces from the Bluetooth-enabled mobile devices for group inference. The key problem addressed in this work is to detect not only static groups but also moving groups with a multi-phased approach based only noisy wireless Received Signal Strength Indicator (RSSIs) observed by multiple wireless scanners without localization support. We propose new centralized and decentralized schemes to process the sparse and noisy wireless data, and leverage graph-based clustering techniques for group detection from short-term and long-term aspects. Group-In provides two outcomes: 1) group detection in short time intervals such as two minutes and 2) long-term linkages such as a month. To verify the performance, we conduct two experimental studies. One consists of 27 controlled scenarios in the lab environments. The other is a real-world scenario where we place Bluetooth scanners in an office environment, and employees carry beacons for more than one month. Both the controlled and real-world experiments result in high accuracy group detection in short time intervals and sampling liberties in terms of the Jaccard index and pairwise similarity coefficient.Comment: This work has been funded by the EU Horizon 2020 Programme under Grant Agreements No. 731993 AUTOPILOT and No.871249 LOCUS projects. The content of this paper does not reflect the official opinion of the EU. Responsibility for the information and views expressed therein lies entirely with the authors. Proc. of ACM/IEEE IPSN'20, 202
    • …
    corecore