3 research outputs found

    One Decade of Glacier Mass Changes on the Tibetan Plateau Derived from Multisensoral Remote Sensing Data

    Get PDF
    The Tibetan Plateau (TP) with an average altitude of 4,500 meters above sea level is characterized by many glaciers and ice caps. Glaciers are a natural indicator for climate variability in this high mountain environment where meteorological stations are rare or non-existent. In addition, the melt water released from the Tibetan glaciers is feeding the headwaters of the major Asian river systems and contributes to the rising levels of endorheic lakes on the plateau. As many people directly rely on the glacier melt water a continuous glacier monitoring program is necessary in this region. In situ measurements of glaciers are important, but are spatial limited due to large logistical efforts, physical constrains and high costs. Remote sensing techniques can overcome this gap and are suitable to complement in situ measurements on a larger scale. In the last decade several remote sensing studies dealt with areal changes of glaciers on the TP. However, glacier area changes only provide a delayed signal to a changing climate and the amount of melt water released from the glaciers cannot be quantified. Therefore it is important to measure the glacier mass balance. In order to estimate glacier mass balances and their spatial differences on the TP, several remote sensing techniques and sensors were synthesized in this thesis. In a first study data from the Ice Cloud and Elevation Satellite (ICESat) mission were employed. ICESat was in orbit between 2003 and 2009 and carried a laser altimeter which recorded highly accurate surface elevation measurements. As in mid-latitudes these measurements are rather sparse glaciers on the TP were grouped into eight climatological homogeneous sub-regions in order to perform a statistical sound analysis of glacier elevation changes. To assess surface elevation changes of a single mountain glacier from ICESat data, an adequate spatial sampling of ICESat measurements need to be present. This is the case for the Grosser Aletschgletscher, located in the Swiss Alps which served as a test site in this thesis. In another study data from the current TanDEM-X satellite mission and from the Shuttle Radar Topography Mission (SRTM) conducted in February 2000 were employed to calculate glacier elevation changes. In a co-authored study, these estimates could be compared with glacier elevation changes obtained from the current French Pléiades satellite mission. In order to calculate glacier mass balances, the derived elevation changes were combined with assumptions about glacier area and ice density in all studies. In this thesis contrasting patterns of glacier mass changes were found on the TP. With an ICESat derived estimate of -15.6±10.1 Gt/a between 2003 and 2009 the average glacier mass balance on the TP was clearly negative. However, some glaciers in the central and north-western part of the TP showed a neutral mass balance or a slightly positive anomaly which was also confirmed by data from the current TanDEM-X satellite mission. A possible explanation of this anomaly in mass balance could be a compensation of the temperature driven glacier melt due to an increase in precipitation

    Quantifying Himalayan glacier change from the 1960s to early 2000s, using corona, glims and aster geospatial Data

    Get PDF
    Since reaching their LIAMs, Himalayan glaciers have generally undergone a period of retreat, evident from large moraines left at former ice limits. Currently, however, detailed assessments of Himalayan glacier fluctuations over the past century are limited and fail to compare spatially or temporally to records available in Central Europe, North America and Scandinavia. Consequently, the variability and magnitude of glacial change across the Himalayas, which is a key indicator of climatic change in this region, is yet to be fully understood. Against a background of poor data availability, Corona imagery and historic GLIMS glacier outlines now offer an opportunity to assess glacier extent for regions of the Himalayas pre-1980. Corona imagery, acquired by a US space-borne reconnaissance mission operational from 1960 to 1970, represents a particularly unique dataset offering high resolution imagery (~1.8 m) with stereo-scopic capabilities. Utilising Corona imagery, there is an opportunity to produce detailed maps of Himalayan glacier extent and extract ice surface elevation estimations, in some instances, for the first time. Despite having been de-classified in 1995, the use of Corona data in the Himalayas has been neglected, mainly because of orthorectification challenges related to its unique geometric distortions. Hence, there remains a need to develop a low cost and easily replicable method of accurately orthorectifying Corona imagery enabling its use as a large-scale glacier mapping tool in the Himalayas. In response to this need, Corona images are orthorectified in this study through the use of: (1) a non-metric photogrammetry approach; and (2) horizontal and vertical reference data acquired from ortho-ASTER imagery and the freely available ASTER GDEM. By comparing glacier measurements derived from Corona imagery, GLIMS data and more contemporary ASTER data, changes in glacier area, length and in some instances volume, between the 1960/70s and early 2000s, were quantified for glaciers selected within four study areas located in Uttarakhand, India and Central Nepal. Importantly, this cross-regional glacier change dataset both complements and enhances current Himalayan records. Most notably, results indicate that glaciers selected in the Bhagirathi and Pindar/Kali basins, Uttarakhand, reduced in area by a relatively small 7.97±0.29% and 7.54±0.26%, respectively. Contrastingly, glaciers selected in the more easterly located Seti and Trisula basins reduced in area by 29.78±0.2% and 50.55±0.08%, respectively. Comparisons of Corona DEM (derived from Corona stereo-pairs) and ASTER Global DEM elevations at the terminus regions of four glaciers revealed extensive surface lowering, ranging from 87±27 m to 142±27 m. For Corona processing, the methods applied were shown to orthorectify Corona images to an accuracy that allows comparable glacier outlines to be delineated, further demonstrating the mapping potential of this dataset. However, for Corona DEM extraction, the use of ASTER spatial control data was shown to be inadequate and the presence of large vertical errors in the DEMs generated hindered the measurement of glacier volume change. For this purpose, it is therefore recommended that the methods developed are tested with the use of very high resolution spatial control data
    corecore