982 research outputs found

    Discrete Wavelet Transforms

    Get PDF
    The discrete wavelet transform (DWT) algorithms have a firm position in processing of signals in several areas of research and industry. As DWT provides both octave-scale frequency and spatial timing of the analyzed signal, it is constantly used to solve and treat more and more advanced problems. The present book: Discrete Wavelet Transforms: Algorithms and Applications reviews the recent progress in discrete wavelet transform algorithms and applications. The book covers a wide range of methods (e.g. lifting, shift invariance, multi-scale analysis) for constructing DWTs. The book chapters are organized into four major parts. Part I describes the progress in hardware implementations of the DWT algorithms. Applications include multitone modulation for ADSL and equalization techniques, a scalable architecture for FPGA-implementation, lifting based algorithm for VLSI implementation, comparison between DWT and FFT based OFDM and modified SPIHT codec. Part II addresses image processing algorithms such as multiresolution approach for edge detection, low bit rate image compression, low complexity implementation of CQF wavelets and compression of multi-component images. Part III focuses watermaking DWT algorithms. Finally, Part IV describes shift invariant DWTs, DC lossless property, DWT based analysis and estimation of colored noise and an application of the wavelet Galerkin method. The chapters of the present book consist of both tutorial and highly advanced material. Therefore, the book is intended to be a reference text for graduate students and researchers to obtain state-of-the-art knowledge on specific applications

    Hyperspectral image compression : adapting SPIHT and EZW to Anisotropic 3-D Wavelet Coding

    Get PDF
    Hyperspectral images present some specific characteristics that should be used by an efficient compression system. In compression, wavelets have shown a good adaptability to a wide range of data, while being of reasonable complexity. Some wavelet-based compression algorithms have been successfully used for some hyperspectral space missions. This paper focuses on the optimization of a full wavelet compression system for hyperspectral images. Each step of the compression algorithm is studied and optimized. First, an algorithm to find the optimal 3-D wavelet decomposition in a rate-distortion sense is defined. Then, it is shown that a specific fixed decomposition has almost the same performance, while being more useful in terms of complexity issues. It is shown that this decomposition significantly improves the classical isotropic decomposition. One of the most useful properties of this fixed decomposition is that it allows the use of zero tree algorithms. Various tree structures, creating a relationship between coefficients, are compared. Two efficient compression methods based on zerotree coding (EZW and SPIHT) are adapted on this near-optimal decomposition with the best tree structure found. Performances are compared with the adaptation of JPEG 2000 for hyperspectral images on six different areas presenting different statistical properties

    Image coding using wavelet transform and adaptive block truncation coding

    Get PDF
    This thesis presents a new image coding using wavelet transform and adaptive block truncation coding. Images are first pre-processed by the wavelet transform and then coded by the adaptive block truncation coding. Algorithms for both monochrome and color images are proposed and experimentally studied. The adaptive block truncation coding is also modified to achieve better performance. For coding monochrome images at the bit-rate region between 0.8 to 1.2 bits/pixel, the performance of the new coding is comparable to the ones of subband codings and other image codings using the wavelet transform; however, the new coding offers less computational load. The new coding also gives a good reconstruction of a color image at the bit-rate of 1.0 bit/pixel. The comparison between the new coding and the original adaptive block truncation coding is also given. The discussion on effects of a filter and a number of decomposition levels used for an implementation of the wavelet transform is included in this thesis, as well

    Significance linked connected component analysis plus

    Get PDF
    Dr. Xinhua Zhuang, Dissertation Supervisor.Field of Study: Computer Science."May 2018."An image coding algorithm, SLCCA Plus, is introduced in this dissertation. SLCCA Plus is a wavelet-based subband coding method. In wavelet-based subband coding, the input images will go through a wavelet transform and be decomposed into wavelet subband pyramids. Then the characteristics of the wavelet coefficients within and among subbands will be utilized to removing the redundancy. The rest information will be organized and go through entropy encoding. SLCCA Plus contains a series improvement method to the SLCCA. Before SLCCA, there are three top-ranked wavelet image coders. Namely, Embedded Zerotree Wavelet coder (EZW), Morphological Representation of Wavelet Date (MEWD), and Set Partitioning in Hierarchical Trees (SPIHT). They exploit either inter-subband relation among zero wavelet coefficients or within-subband clustering. SLCCA, on the other hand, outperforms these three coders by exploring both the inter- subband coefficients relations and within-subband clustering of significant wavelet coefficients. SLCCA Plus strengthens SLCCA in the following aspects: Intelligence quantization, enhanced cluster filter, potential-significant shared-zero, and improved context models. The purpose of the first three improvements is to remove redundancy information further while keeping the image error as low as possible. As a result, they achieve a better trade-off between bit cost and image quality. Moreover, the improved context lowers the entropy by refining the classification of symbols in cluster sequence and magnitude bit-planes. Lower entropy means the adaptive arithmetic coding can achieve a better coding gain. For performance evaluation, SLCCA Plus is compared to SLCCA and JPEG2000. On average, SLCCA Plus achieves 7% bit saving over JPEG 2000 and 4% over SLCCA. The results comparison shows that SLCCA Plus shows more texture and edge details at a lower bitrate.Includes bibliographical references (pages 88-92)
    corecore