301 research outputs found

    IDPAL – A Partially-Adiabatic Energy-Efficient Logic Family: Theory and Applications to Secure Computing

    Get PDF
    Low-power circuits and issues associated with them have gained a significant amount of attention in recent years due to the boom in portable electronic devices. Historically, low-power operation relied heavily on technology scaling and reduced operating voltage, however this trend has been slowing down recently due to the increased power density on chips. This dissertation introduces a new very-low power partially-adiabatic logic family called Input-Decoupled Partially-Adiabatic Logic (IDPAL) with applications in low-power circuits. Experimental results show that IDPAL reduces energy usage by 79% compared to equivalent CMOS implementations and by 25% when compared to the best adiabatic implementation. Experiments ranging from a simple buffer/inverter up to a 32-bit multiplier are explored and result in consistent energy savings, showing that IDPAL could be a viable candidate for a low-power circuit implementation. This work also shows an application of IDPAL to secure low-power circuits against power analysis attacks. It is often assumed that encryption algorithms are perfectly secure against attacks, however, most times attacks using side channels on the hardware implementation of an encryption operation are not investigated. Power analysis attacks are a subset of side channel attacks and can be implemented by measuring the power used by a circuit during an encryption operation in order to obtain secret information from the circuit under attack. Most of the previously proposed solutions for power analysis attacks use a large amount of power and are unsuitable for a low-power application. The almost-equal energy consumption for any given input in an IDPAL circuit suggests that this logic family is a good candidate for securing low-power circuits again power analysis attacks. Experimental results ranging from small circuits to large multipliers are performed and the power-analysis attack resistance of IDPAL is investigated. Results show that IDPAL circuits are not only low-power but also the most secure against power analysis attacks when compared to other adiabatic low-power circuits. Finally, a hybrid adiabatic-CMOS microprocessor design is presented. The proposed microprocessor uses IDPAL for the implementation of circuits with high switching activity (e.g. ALU) and CMOS logic for other circuits (e.g. memory, controller). An adiabatic-CMOS interface for transforming adiabatic signals to square-wave signals is presented and issues associated with a hybrid implementation and their solutions are also discussed

    Ultra Low Power Digital Circuit Design for Wireless Sensor Network Applications

    Get PDF
    Ny forskning innenfor feltet trådløse sensornettverk åpner for nye og innovative produkter og løsninger. Biomedisinske anvendelser er blant områdene med størst potensial og det investeres i dag betydelige beløp for å bruke denne teknologien for å gjøre medisinsk diagnostikk mer effektiv samtidig som man åpner for fjerndiagnostikk basert på trådløse sensornoder integrert i et ”helsenett”. Målet er å forbedre tjenestekvalitet og redusere kostnader samtidig som brukerne skal oppleve forbedret livskvalitet som følge av økt trygghet og mulighet for å tilbringe mest mulig tid i eget hjem og unngå unødvendige sykehusbesøk og innleggelser. For å gjøre dette til en realitet er man avhengige av sensorelektronikk som bruker minst mulig energi slik at man oppnår tilstrekkelig batterilevetid selv med veldig små batterier. I sin avhandling ” Ultra Low power Digital Circuit Design for Wireless Sensor Network Applications” har PhD-kandidat Farshad Moradi fokusert på nye løsninger innenfor konstruksjon av energigjerrig digital kretselektronikk. Avhandlingen presenterer nye løsninger både innenfor aritmetiske og kombinatoriske kretser, samtidig som den studerer nye statiske minneelementer (SRAM) og alternative minnearkitekturer. Den ser også på utfordringene som oppstår når silisiumteknologien nedskaleres i takt med mikroprosessorutviklingen og foreslår løsninger som bidrar til å gjøre kretsløsninger mer robuste og skalerbare i forhold til denne utviklingen. De viktigste konklusjonene av arbeidet er at man ved å introdusere nye konstruksjonsteknikker både er i stand til å redusere energiforbruket samtidig som robusthet og teknologiskalerbarhet øker. Forskningen har vært utført i samarbeid med Purdue University og vært finansiert av Norges Forskningsråd gjennom FRINATprosjektet ”Micropower Sensor Interface in Nanometer CMOS Technology”

    Implementation of arithmetic primitives using truly deep submicron technology (TDST)

    Get PDF
    The invention of the transistor in 1947 at Bell Laboratories revolutionised the electronics industry and created a powerful platform for emergence of new industries. The quest to increase the number of devices per chip over the last four decades has resulted in rapid transition from Small-Scale-Integration (SSI) and Large-Scale-lntegration (LSI), through to the Very-Large-Scale-Integration (VLSI) technologies, incorporating approximately 10 to 100 million devices per chip. The next phase in this evolution is the Ultra-Large-Scale-Integration (ULSI) aiming to realise new application domains currently not accessible to CMOS technology. Although technology is continuously evolving to produce smaller systems with minimised power dissipation, the IC industry is facing major challenges due to constraints on power density (W/cm2) and high dynamic (operating) and static (standby) power dissipation. Mobile multimedia communication and optical based technologies have rapidly become a significant area of research and development challenging a variety of technological fronts. The future emergence or 4G (4th Generation) wireless communications networks is further driving this development, requiring increasing levels of media rich content. The processing requirements for capture, conversion, compression, decompression, enhancement and display of higher quality multimedia, place heavy demands on current ULSI systems. This is also apparent for mobile applications and intelligent optical networks where silicon chip area and power dissipation become primary considerations. In addition to the requirements for very low power, compact size and real-time processing, the rapidly evolving nature of telecommunication networks means that flexible soft programmable systems capable of adaptation to support a number of different standards and/or roles become highly desirable. In order to fully realise the capabilities promised by the 4G and supporting intelligent networks, new enabling technologies arc needed to facilitate the next generation of personal communications devices. Most of the current solutions to meet these challenges are based on various implementations of conventional architectures. For decades, silicon has been the main platform of computing, however it is slow, bulky, runs too hot, and is too expensive. Thus, new approaches to architectures, driving multimedia and future telecommunications systems, are needed in order to extend the life cycle of silicon technology. The emergence of Truly Deep Submicron Technology (TDST) and related 3-D interconnection technologies have provided potential alternatives from conventional architectures to 3-D system solutions, through integration of IDST, Vertical Software Mapping and Intelligent Interconnect Technology (IIT). The concept of Soft-Chip Technology (SCT) entails integration of Soft• Processing Circuits with Soft-Configurable Circuits . This concept can effectively manipulate hardware primitives through vertical integration of control and data. Thus the notion of 3-D Soft-Chip emerges as a new design algorithm for content-rich multimedia, telecommunication and intelligent networking system applications. 3•D architectures (design algorithms used suitable for 3-D soft-chip technology), are driven by three factors. The first is development of new device technology (TDST) that can support new architectures with complexities of 100M to 1000M devices. The second is development of advanced wafer bonding techniques such as Indium bump and the more futuristic optical interconnects for 3-D soft-chip mapping. The third is related to improving the performance of silicon CMOS systems as devices continue to scale down in dimensions. One of the fundamental building blocks of any computer system is the arithmetic component. Optimum performance of the system is determined by the efficiency of each individual component, as well as the network as a whole entity. Development of configurable arithmetic primitives is the fundamental focus in 3-D architecture design where functionality can be implemented through soft configurable hardware elements. Therefore the ability to improve the performance capability of a system is of crucial importance for a successful design. Important factors that predict the efficiency of such arithmetic components are: • The propagation delay of the circuit, caused by the gate, diffusion and wire capacitances within !he circuit, minimised through transistor sizing. and • Power dissipation, which is generally based on node transition activity. [2] Although optimum performance of 3-D soft-chip systems is primarily established by the choice of basic primitives such as adders and multipliers, the interconnecting network also has significant degree of influence on !he efficiency of the system. 3-D superposition of devices can decrease interconnect delays by up to 60% compared to a similar planar architecture. This research is based on development and implementation of configurable arithmetic primitives, suitable to the 3-D architecture, and has these foci: • To develop a variety of arithmetic components such as adders and multipliers with particular emphasis on minimum area and compatible with 3-D soft-chip design paradigm. • To explore implementation of configurable distributed primitives for arithmetic processing. This entails optimisation of basic primitives, and using them as part of array processing. In this research the detailed designs of configurable arithmetic primitives are implemented using TDST O.l3µm (130nm) technology, utilising CAD software such as Mentor Graphics and Cadence in Custom design mode, carrying through design, simulation and verification steps

    Sensor de performance para células de memória CMOS

    Get PDF
    Vivemos hoje em dia tempos em que quase tudo tem um pequeno componente eletrónico e por sua vez esse componente precisa de uma memória para guardar as suas instruções. Dentro dos vários tipos de memórias, as Complementary Metal Oxide Semiconductor (CMOS) são as que mais utilização têm nos circuitos integrados e, com o avançar da tecnologia a ficar cada vez com uma escala mais reduzida, faz com que os problemas de performance e fiabilidade sejam uma constante. Efeitos como o BTI (Bias Thermal Instability), TDDB (Time Dependent Dielectric Breakdown), HCI (Hot Carrier Injection), EM (Electromigration), ao longo do tempo vão deteriorando os parâmetros físicos dos transístores de efeito de campo (MOSFET), mudando as suas propriedades elétricas. Associado ao efeito de BTI podemos ter o efeito PBTI (Positive BTI), que afeta mais os transístores NMOS, e o efeito NBTI (Negative BTI), que afeta mais os transístores PMOS. Se para nanotecnologias até 32 nanómetros o efeito NBTI é dominante, para tecnologias mais baixas os 2 efeitos são igualmente importantes. Porém, existem ainda outras variações no desempenho que podem colocar em causa o bom funcionamento dos circuitos, como as variações de processo (P), tensão (V) e temperatura (T), ou considerando todas estas variações, e de uma forma genérica, PVTA (Process, Voltage, Temperature and Aging). Tendo como base as células de memória de acesso aleatório (RAM, Random Access Memory), em particular as memórias estáticas (SRAM, Static Random Access Memory) e dinâmicas (DRAM, Dynamic Random Access Memory) que possuem tempos de leitura e escrita precisos, estas ficam bastante expostas ao envelhecimento dos seus componentes e, consecutivamente, acontece um decréscimo na sua performance, resultando em transições mais lentas, que por sua vez fará com que existam leituras e escritas mais lentas e poderão ocorrer erros nessas leituras e escritas . Para além destes fenómenos, temos também o facto de a margem de sinal ruido (SNM - Static Noise Margin) diminuir, fazendo com que a fiabilidade da memória seja colocada em causa. O envelhecimento das memórias CMOS traduz-se, portanto, na ocorrência de erros nas memórias ao longo do tempo, o que é indesejável, especialmente em sistemas críticos onde a ocorrência de um erro ou uma falha na memória pode significar por em risco sistemas de elevada importância e fundamentais (por exemplo, em sistemas de segurança, um erro pode desencadear um conjunto de ações não desejadas). Anteriormente já foram apresentadas algumas soluções para esta monitorização dos erros de uma memória, disponíveis na literatura, como é o caso do sensor de envelhecimento embebido no circuito OCAS (On-Chip Aging Sensor), que permite detetar envelhecimento numa SRAM provocado pelo envelhecimento por NBTI. Contudo este sensor demonstra algumas limitações, pois apenas se aplica a um conjunto de células SRAM conectadas a uma bit line, não sendo aplicado individualmente a outras células de memória como uma DRAM e não contemplando o efeito PBTI. Outra solução apresentada anteriormente é o Sensor de Envelhecimento para Células de Memória CMOS que demonstra alguma evolução em relação ao sensor OCAS. Contudo, ainda tem limitações, como é o caso de estar bastante dependente do sincronismo com a memória e não permitir qualquer tipo de calibração do sistema ao longo do seu funcionamento. O trabalho apresentado nesta dissertação resolve muitos dos problemas existentes nos trabalhos anteriores. Isto é, apresenta-se um sensor de performance para memórias capaz de reconhecer quando é que a memória pode estar na eminência de falhar, devido a fatores que afetam o desempenho da memória nas operações de escrita e leitura. Ou seja, sinaliza de forma preditiva as falhas. Este sensor está dividido em três grandes partes, como a seguir se descreve. O Transistion Detector é uma delas, que funciona como um “conversor” das transições na bit line da memória para o sensor, criando pulsos de duração proporcional à duração da transição na bit line, sendo que uma transição rápida resulta em pulsos curtos e uma transição lenta resulta em pulsos longos. Esta parte do circuito apresenta 2 tipos de configurações para o caso de ser aplicado numa SRAM, sendo que uma das configurações é para as memórias SRAM inicializadas a VDD, e a segunda configuração para memórias SRAM inicializadas a VDD/2. É também apresentada uma terceira configuração para o caso de o detetor ser aplicado numa DRAM. O funcionamento do detetor de transições está baseado num conjunto de inversores desequilibrados (ou seja, com capacidades de condução diferentes entre o transístor N e P no inversor), criando assim inversores do tipo N (com o transístor N mais condutivo que o P) e inversores do tipo P (com o transístor P mais condutivo que o N) que respondem de forma diferente às transições de 1 para 0 e vice-versa. Estas diferenças serão cruciais para a criação do pulso final que entrará no Pulse Detetor. Este segundo bloco do sensor é responsável por carregar um condensador com uma tensão proporcional ao tempo que a bit line levou a transitar. É nesta parte que se apresenta uma caraterística nova e importante, quando comparado com as soluções já existentes, que é a capacidade do sensor poder ser calibrado. Para isso, é utilizado um conjunto de transístores para carregar o condensador durante o impulso gerado no detetor de transições, que permitem aumentar ou diminuir a resistência de carga do condensador, ficando este com mais ou menos tensão (a tensão proporcional ao tempo da transição da bit line) a ser usada na Comparação seguinte. O terceiro grande bloco deste sensor é resumidamente um bloco comparador, que compara a tensão guardada no condensador com uma tensão de referência disponível no sensor e definida durante o projeto. Este comparador tem a função de identificar qual destas 2 tensões é a mais alta (a do condensador, que é proporcional ao tempo de transição da bit line, ou a tensão de referência) e fazer com a mesma seja “disparada” para VDD, sendo que a tensão mais baixa será colocada a VSS. Desta forma é sinalizado se a transição que está a ser avaliada deve ser considerada um erro ou não. Para controlar todo o processo, o sensor tem na sua base de funcionamento um controlador (uma máquina de estados finita composta por 3 estados). O primeiro estado do controlador é o estado de Reset, que faz com que todos os pontos do circuito estejam com as tenções necessárias ao início de funcionamento do mesmo. O segundo estado é o Sample, que fica a aguardar uma transição na bit line para ser validada pelo sensor e fazer com que o mesmo avance para o terceiro estado, que é o de Compare, onde ativa o comparador do sensor e coloca no exterior o resultado dessa comparação. Assim, se for detetado uma transição demasiado lenta na bit line, que é um sinal de erro, o mesmo será sinalizado para o exterior activando o sinal de saída. Caso o sensor não detete nenhum erro nas transições, o sinal de saída não é activado. O sensor tem a capacidade de funcionar em modo on-line, ou seja, não é preciso desligar o circuito de memória do seu funcionamento normal para poder ser testado. Para além disso, pode ainda ser utilizado internamente na memória, como sensor local (monitorizando as células reais de memória), ou externamente, como sensor global, caso seja colocado a monitorizar uma célula de memória fictícia.Within the several types of memories, the Complementary Metal Oxide Semiconductor (CMOS) are the most used in the integrated circuits and, as technology advances and becomes increasingly smaller in scale, it makes performance and reliability a constant problem. Effects such as BTI (Bias Thermal Instability), the positive (PBTI - Positive BTI) and the negative (NBTI - Negative BTI), TDDB (Time Dependent Dielectric Breakdown), HCI (Hot Carrier Injection), EM (Electromigration), etc., are aging effects that contribute to a cumulatively degradation of the transistors. Moreover, other parametric variations may also jeopardize the proper functioning of circuits and contribute to reduce circuits’ performance, such as process variations (P), power-supply voltage variations (V) and temperature variations (T), or considering all these variations, and in a generic way, PVTA (Process, Voltage, Temperature and Aging). The Sensor proposed in this paper aims to signalize these problems so that the user knows when the memory operation may be compromised. The sensor is made up of three important parts, the Transition Detector, the Pulse Detector and the Comparator, creating a sensor that converts bit line transition created in a memory operation (read or write) into a pulse and a voltage, that can be compared with a reference voltage available in the sensor. If the reference voltage is higher than the voltage proportional to the bit line transition time, the sensor output is not activated; but if the bit line transition time is high enough to generate a voltage higher than the reference voltage in the sensor, the sensor output signalizes a predictive error, denoting that the memory performance is in a critical state that may lead to an error if corrective measures are not taken. One important feature in this sensor topology is that it can be calibrated during operation, by controlling sensor’s sensibility to the bit line transition. Another important feature is that it can be applied locally, to monitor the online operation of the memory, or globally, by monitoring a dummy memory in pre-defined conditions. Moreover, it can be applied to SRAM or DRAM, being the first online sensor available for DRAM memories
    corecore