227 research outputs found

    Scale Issues in Remote Sensing: A Review on Analysis, Processing and Modeling

    Get PDF
    With the development of quantitative remote sensing, scale issues have attracted more and more the attention of scientists. Research is now suffering from a severe scale discrepancy between data sources and the models used. Consequently, both data interpretation and model application become difficult due to these scale issues. Therefore, effectively scaling remotely sensed information at different scales has already become one of the most important research focuses of remote sensing. The aim of this paper is to demonstrate scale issues from the points of view of analysis, processing and modeling and to provide technical assistance when facing scale issues in remote sensing. The definition of scale and relevant terminologies are given in the first part of this paper. Then, the main causes of scale effects and the scaling effects on measurements, retrieval models and products are reviewed and discussed. Ways to describe the scale threshold and scale domain are briefly discussed. Finally, the general scaling methods, in particular up-scaling methods, are compared and summarized in detail

    Principles and methods of scaling geospatial Earth science data

    Get PDF
    The properties of geographical phenomena vary with changes in the scale of measurement. The information observed at one scale often cannot be directly used as information at another scale. Scaling addresses these changes in properties in relation to the scale of measurement, and plays an important role in Earth sciences by providing information at the scale of interest, which may be required for a range of applications, and may be useful for inferring geographical patterns and processes. This paper presents a review of geospatial scaling methods for Earth science data. Based on spatial properties, we propose a methodological framework for scaling addressing upscaling, downscaling and side-scaling. This framework combines scale-independent and scale-dependent properties of geographical variables. It allows treatment of the varying spatial heterogeneity of geographical phenomena, combines spatial autocorrelation and heterogeneity, addresses scale-independent and scale-dependent factors, explores changes in information, incorporates geospatial Earth surface processes and uncertainties, and identifies the optimal scale(s) of models. This study shows that the classification of scaling methods according to various heterogeneities has great potential utility as an underpinning conceptual basis for advances in many Earth science research domains. © 2019 Elsevier B.V

    EFFECTS OF SPATIAL RESOLUTION AND LANDSCAPE STRUCTURE ON LAND COVER CHARACTERIZATION

    Get PDF
    This dissertation addressed problems in scaling, problems that are among the main challenges in remote sensing. The principal objective of the research was to investigate the effects of changing spatial scale on the representation of land cover. A second objective was to determine the relationship between such effects, characteristics of landscape structure and scaling procedures. Four research issues related to spatial scaling were examined. They included: 1) the upscaling of Normalized Difference Vegetation Index (NDVI); 2) the effects of spatial scale on indices of landscape structure; 3) the representation of land cover databases at different spatial scales; and 4) the relationships between landscape indices and land cover area estimations. The overall bias resulting from non-linearity of NDVI in relation to spatial resolution is generally insignificant as compared to other factors such as influences of aerosols and water vapor. The bias is, however, related to land surface characteristics. Significant errors may be introduced in heterogeneous areas where different land cover types exhibit strong spectral contrast. Spatially upscaled SPOT and TM NDVIs have information content comparable with the AVHRR-derived NDVI: Indices of landscape structure and spatial resolution are generally related, but the exact forms of the relationships are subject to changes in other factors including the basic patch unit constituting a landscape and the proportional area of foreground land cover under consideration. The extent of agreement between spatially aggregated coarse resolution land cover datasets and full resolution datasets changes with the properties of the original datasets, including the pixel size and class definition. There are close relationships between landscape structure and class areas estimated from spatially aggregated land cover databases. The relationships, however, do not permit extension from one area to another. Inversion calibration across different geographic/ecological areas is, therefore, not feasible. Different rules govern the land cover area changes across resolutions when different upscaling methods are used. Special attention should be given to comparison between land cover maps derived using different methods

    Factors influencing the accuracy of remote sensing classifications: a comparative study

    Get PDF
    Within last 20 years, a number of methods have been employed for classifying remote sensing data, including parametric methods (e.g. the maximum likelihood classifier) and non-parametric classifiers (such as neural network classifiers).Each of these classification algorithms has some specific problems which limits its use. This research studies some alternative classification methods for land cover classification and compares their performance with the well established classification methods. The areas selected for this study are located near Littleport (Ely), in East Anglia, UK and in La Mancha region of Spain. Images in the optical bands of the Landsat ETM+ for year 2000 and InSAR data from May to September of 1996 for UK area, DAIS hyperspectral data and Landsat ETM+ for year 2000 for Spain area are used for this study. In addition, field data for the year 1996 were collected from farmers and for year 2000 were collected by field visits to both areas in the UK and Spain to generate the ground reference data set. The research was carried out in three main stages.The overall aim of this study is to assess the relative performance of four approaches to classification in remote sensing - the maximum likelihood, artificial neural net, decision tree and support vector machine methods and to examine factors which affect their performance in term of overall classification accuracy. Firstly, this research studies the behaviour of decision tree and support vector machine classifiers for land cover classification using ETM+ (UK) data. This stage discusses some factors affecting classification accuracy of a decision tree classifier, and also compares the performance of the decision tree with that of the maximum likelihood and neural network classifiers. The use of SVM requires the user to set the values of some parameters, such as type of kernel, kernel parameters, and multi-class methods as these parameters can significantly affect the accuracy of the resulting classification. This stage involves studying the effects of varying the various user defined parameters and noting their effect on classification accuracy. It is concluded that SVM perform far better than decision tree, maximum likelihood and neural network classifiers for this type of study. The second stage involves applying the decision tree, maximum likelihood and neural network classifiers to InSAR coherence and intensity data and evaluating the utility of this type of data for land cover classification studies. Finally, the last stage involves studying the response of SVMs, decision trees, maximum likelihood and neural classifier to different training data sizes, number of features, sampling plan, and the scale of the data used. The conclusion from the experiments presented in this stage is that the SVMs are unaffected by the Hughes phenomenon, and perform far better than the other classifiers in all cases. The performance of decision tree classifier based feature selection is found to be quite good in comparison with MNF transform. This study indicates that good classification performance depends on various parameters such as data type, scale of data, training sample size and type of classification method employed

    Multiscale object-specific analysis : an integrated hierarchical approach for landscape ecology

    Full text link
    Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal

    Estimation of High-Resolution Evapotranspiration in Heterogeneous Environments Using Drone-Based Remote Sensing

    Get PDF
    Evapotranspiration (ET) is a key element of hydrological cycle analysis, irrigation demand, and for better allocation of water resources in the ecosystem. For successful water resources management activities, precise estimate of ET is necessary. Although several attempts have been made to achieve that, variation in temporal and spatial scales constitutes a major challenge, particularly in heterogeneous canopy environments such as vineyards, orchards, and natural areas. The advent of remote sensing information from different platforms, particularly the small unmanned aerial systems (sUAS) technology with lightweight sensors allows users to capture high-resolution data faster than traditional methods, described as “flexible in timing”. In this study, the Two Source Energy Balance Model (TSEB) along with high-resolution data from sUAS were used to bridge the gap in ET issues related to spatial and temporal scales. Over homogeneous vegetation surfaces, relatively low spatial resolution information derived from Landsat (e.g., 30 m) might be appropriate for ET estimate, which can capture differences between fields. However, in agricultural landscapes with presence of vegetation rows and interrows, the homogeneity is less likely to be met and the ideal conditions may be difficult to identify. For most agricultural settings, row spacing can vary within a field (vineyards and orchards), making the agricultural landscape less homogenous. This leads to a key question related to how the contextual spatial domain/model grid size could influence the estimation of surface fluxes in canopy environments such as vineyards. Furthermore, temporal upscaling of instantaneous ET at daily or longer time scales is of great practical importance in managing water resources. While remote sensing-based ET models are promising tools to estimate instantaneous ET, additional models are needed to scale up the estimated or modeled instantaneous ET to daily values. Reliable and precise daily ET (ETd) estimation is essential for growers and water resources managers to understand the diurnal and seasonal variation in ET. In response to this issue, different existing extrapolation/upscaling daily ET (ETd) models were assessed using eddy covariance (EC) and sUAS measurements. On the other hand, ET estimation over semi-arid naturally vegetated regions becomes an issue due to high heterogeneity in such environments where vegetation tends to be randomly distributed over the land surface. This reflects the conditions of natural vegetation in river corridors. While significant efforts were made to estimate ET at agricultural landscapes, accurate spatial information of ET over riparian ecosystems is still challenging due to various species associated with variable amounts of bare soil and surface water. To achieve this, the TSEB model with high-resolution remote sensing data from sUAS were used to characterize the spatial heterogeneity and calculate the ET over a natural environment that features arid climate and various vegetation types at the San Rafael River corridor

    Factors influencing the accuracy of remote sensing classifications: a comparative study

    Get PDF
    Within last 20 years, a number of methods have been employed for classifying remote sensing data, including parametric methods (e.g. the maximum likelihood classifier) and non-parametric classifiers (such as neural network classifiers).Each of these classification algorithms has some specific problems which limits its use. This research studies some alternative classification methods for land cover classification and compares their performance with the well established classification methods. The areas selected for this study are located near Littleport (Ely), in East Anglia, UK and in La Mancha region of Spain. Images in the optical bands of the Landsat ETM+ for year 2000 and InSAR data from May to September of 1996 for UK area, DAIS hyperspectral data and Landsat ETM+ for year 2000 for Spain area are used for this study. In addition, field data for the year 1996 were collected from farmers and for year 2000 were collected by field visits to both areas in the UK and Spain to generate the ground reference data set. The research was carried out in three main stages.The overall aim of this study is to assess the relative performance of four approaches to classification in remote sensing - the maximum likelihood, artificial neural net, decision tree and support vector machine methods and to examine factors which affect their performance in term of overall classification accuracy. Firstly, this research studies the behaviour of decision tree and support vector machine classifiers for land cover classification using ETM+ (UK) data. This stage discusses some factors affecting classification accuracy of a decision tree classifier, and also compares the performance of the decision tree with that of the maximum likelihood and neural network classifiers. The use of SVM requires the user to set the values of some parameters, such as type of kernel, kernel parameters, and multi-class methods as these parameters can significantly affect the accuracy of the resulting classification. This stage involves studying the effects of varying the various user defined parameters and noting their effect on classification accuracy. It is concluded that SVM perform far better than decision tree, maximum likelihood and neural network classifiers for this type of study. The second stage involves applying the decision tree, maximum likelihood and neural network classifiers to InSAR coherence and intensity data and evaluating the utility of this type of data for land cover classification studies. Finally, the last stage involves studying the response of SVMs, decision trees, maximum likelihood and neural classifier to different training data sizes, number of features, sampling plan, and the scale of the data used. The conclusion from the experiments presented in this stage is that the SVMs are unaffected by the Hughes phenomenon, and perform far better than the other classifiers in all cases. The performance of decision tree classifier based feature selection is found to be quite good in comparison with MNF transform. This study indicates that good classification performance depends on various parameters such as data type, scale of data, training sample size and type of classification method employed
    corecore