17,943 research outputs found

    Comparison and Adaptation of Automatic Evaluation Metrics for Quality Assessment of Re-Speaking

    Get PDF
    Re-speaking is a mechanism for obtaining high quality subtitles for use in live broadcast and other public events. Because it relies on humans performing the actual re-speaking, the task of estimating the quality of the results is non-trivial. Most organisations rely on humans to perform the actual quality assessment, but purely automatic methods have been developed for other similar problems, like Machine Translation. This paper will try to compare several of these methods: BLEU, EBLEU, NIST, METEOR, METEOR-PL, TER and RIBES. These will then be matched to the human-derived NER metric, commonly used in re-speaking.Comment: Comparison and Adaptation of Automatic Evaluation Metrics for Quality Assessment of Re-Speaking. arXiv admin note: text overlap with arXiv:1509.0908

    Comparison and Adaptation of Automatic Evaluation Metrics for Quality Assessment of Re-Speaking

    Get PDF
    Re-speaking is a mechanism for obtaining high quality subtitles for use in livebroadcast and other public events. Because it relies on humans performing theactual re-speaking, the task of estimating the quality of the results is non-trivial.Most organisations rely on humans to perform the actual quality assessment,but purely automatic methods have been developed for other similar problems,like Machine Translation. This paper will try to compare several of thesemethods: BLEU, EBLEU, NIST, METEOR, METEOR-PL, TER and RIBES.These will then be matched to the human-derived NER metric, commonly usedin re-speaking

    Parallel Reference Speaker Weighting for Kinematic-Independent Acoustic-to-Articulatory Inversion

    Get PDF
    Acoustic-to-articulatory inversion, the estimation of articulatory kinematics from an acoustic waveform, is a challenging but important problem. Accurate estimation of articulatory movements has the potential for significant impact on our understanding of speech production, on our capacity to assess and treat pathologies in a clinical setting, and on speech technologies such as computer aided pronunciation assessment and audio-video synthesis. However, because of the complex and speaker-specific relationship between articulation and acoustics, existing approaches for inversion do not generalize well across speakers. As acquiring speaker-specific kinematic data for training is not feasible in many practical applications, this remains an important and open problem. This paper proposes a novel approach to acoustic-to-articulatory inversion, Parallel Reference Speaker Weighting (PRSW), which requires no kinematic data for the target speaker and a small amount of acoustic adaptation data. PRSW hypothesizes that acoustic and kinematic similarities are correlated and uses speaker-adapted articulatory models derived from acoustically derived weights. The system was assessed using a 20-speaker data set of synchronous acoustic and Electromagnetic Articulography (EMA) kinematic data. Results demonstrate that by restricting the reference group to a subset consisting of speakers with strong individual speaker-dependent inversion performance, the PRSW method is able to attain kinematic-independent acoustic-to-articulatory inversion performance nearly matching that of the speaker-dependent model, with an average correlation of 0.62 versus 0.63. This indicates that given a sufficiently complete and appropriately selected reference speaker set for adaptation, it is possible to create effective articulatory models without kinematic training data

    Speech Enhancement for Automatic Analysis of Child-Centered Audio Recordings

    Get PDF
    Analysis of child-centred daylong naturalist audio recordings has become a de-facto research protocol in the scientific study of child language development. The researchers are increasingly using these recordings to understand linguistic environment a child encounters in her routine interactions with the world. These audio recordings are captured by a microphone that a child wears throughout a day. The audio recordings, being naturalistic, contain a lot of unwanted sounds from everyday life which degrades the performance of speech analysis tasks. The purpose of this thesis is to investigate the utility of speech enhancement (SE) algorithms in the automatic analysis of such recordings. To this effect, several classical signal processing and modern machine learning-based SE methods were employed 1) as a denoiser for speech corrupted with additive noise sampled from real-life child-centred daylong recordings and 2) as front-end for downstream speech processing tasks of addressee classification (infant vs. adult-directed speech) and automatic syllable count estimation from the speech. The downstream tasks were conducted on data derived from a set of geographically, culturally, and linguistically diverse child-centred daylong audio recordings. The performance of denoising was evaluated through objective quality metrics (spectral distortion and instrumental intelligibility) and through the downstream task performance. Finally, the objective evaluation results were compared with downstream task performance results to find whether objective metrics can be used as a reasonable proxy to select SE front-end for a downstream task. The results obtained show that a recently proposed Long Short-Term Memory (LSTM)-based progressive learning architecture provides maximum performance gains in the downstream tasks in comparison with the other SE methods and baseline results. Classical signal processing-based SE methods also lead to competitive performance. From the comparison of objective assessment and downstream task performance results, no predictive relationship between task-independent objective metrics and performance of downstream tasks was found

    I hear you eat and speak: automatic recognition of eating condition and food type, use-cases, and impact on ASR performance

    Get PDF
    We propose a new recognition task in the area of computational paralinguistics: automatic recognition of eating conditions in speech, i. e., whether people are eating while speaking, and what they are eating. To this end, we introduce the audio-visual iHEARu-EAT database featuring 1.6 k utterances of 30 subjects (mean age: 26.1 years, standard deviation: 2.66 years, gender balanced, German speakers), six types of food (Apple, Nectarine, Banana, Haribo Smurfs, Biscuit, and Crisps), and read as well as spontaneous speech, which is made publicly available for research purposes. We start with demonstrating that for automatic speech recognition (ASR), it pays off to know whether speakers are eating or not. We also propose automatic classification both by brute-forcing of low-level acoustic features as well as higher-level features related to intelligibility, obtained from an Automatic Speech Recogniser. Prediction of the eating condition was performed with a Support Vector Machine (SVM) classifier employed in a leave-one-speaker-out evaluation framework. Results show that the binary prediction of eating condition (i. e., eating or not eating) can be easily solved independently of the speaking condition; the obtained average recalls are all above 90%. Low-level acoustic features provide the best performance on spontaneous speech, which reaches up to 62.3% average recall for multi-way classification of the eating condition, i. e., discriminating the six types of food, as well as not eating. The early fusion of features related to intelligibility with the brute-forced acoustic feature set improves the performance on read speech, reaching a 66.4% average recall for the multi-way classification task. Analysing features and classifier errors leads to a suitable ordinal scale for eating conditions, on which automatic regression can be performed with up to 56.2% determination coefficient

    Speaker segmentation and clustering

    Get PDF
    This survey focuses on two challenging speech processing topics, namely: speaker segmentation and speaker clustering. Speaker segmentation aims at finding speaker change points in an audio stream, whereas speaker clustering aims at grouping speech segments based on speaker characteristics. Model-based, metric-based, and hybrid speaker segmentation algorithms are reviewed. Concerning speaker clustering, deterministic and probabilistic algorithms are examined. A comparative assessment of the reviewed algorithms is undertaken, the algorithm advantages and disadvantages are indicated, insight to the algorithms is offered, and deductions as well as recommendations are given. Rich transcription and movie analysis are candidate applications that benefit from combined speaker segmentation and clustering. © 2007 Elsevier B.V. All rights reserved

    Controllable Text Generation for All Ages : Evaluating a Plug-and-Play Approach to Age-Adapted Dialogue

    Get PDF
    Funding Information: We would like to thank the four anonymous GEM reviewers for their valuable feedback and the participants of our crowdsourcing experiments. The work received funding from the University of Amsterdam’s Research Priority Area Human(e) AI and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 819455).Publisher PD

    Findings of the IWSLT 2022 Evaluation Campaign.

    Get PDF
    The evaluation campaign of the 19th International Conference on Spoken Language Translation featured eight shared tasks: (i) Simultaneous speech translation, (ii) Offline speech translation, (iii) Speech to speech translation, (iv) Low-resource speech translation, (v) Multilingual speech translation, (vi) Dialect speech translation, (vii) Formality control for speech translation, (viii) Isometric speech translation. A total of 27 teams participated in at least one of the shared tasks. This paper details, for each shared task, the purpose of the task, the data that were released, the evaluation metrics that were applied, the submissions that were received and the results that were achieved
    • …
    corecore