135,820 research outputs found

    Heterogeneous ensemble selection for evolving data streams.

    Get PDF
    Ensemble learning has been widely applied to both batch data classification and streaming data classification. For the latter setting, most existing ensemble systems are homogenous, which means they are generated from only one type of learning model. In contrast, by combining several types of different learning models, a heterogeneous ensemble system can achieve greater diversity among its members, which helps to improve its performance. Although heterogeneous ensemble systems have achieved many successes in the batch classification setting, it is not trivial to extend them directly to the data stream setting. In this study, we propose a novel HEterogeneous Ensemble Selection (HEES) method, which dynamically selects an appropriate subset of base classifiers to predict data under the stream setting. We are inspired by the observation that a well-chosen subset of good base classifiers may outperform the whole ensemble system. Here, we define a good candidate as one that expresses not only high predictive performance but also high confidence in its prediction. Our selection process is thus divided into two sub-processes: accurate-candidate selection and confident-candidate selection. We define an accurate candidate in the stream context as a base classifier with high accuracy over the current concept, while a confident candidate as one with a confidence score higher than a certain threshold. In the first sub-process, we employ the prequential accuracy to estimate the performance of a base classifier at a specific time, while in the latter sub-process, we propose a new measure to quantify the predictive confidence and provide a method to learn the threshold incrementally. The final ensemble is formed by taking the intersection of the sets of confident classifiers and accurate classifiers. Experiments on a wide range of data streams show that the proposed method achieves competitive performance with lower running time in comparison to the state-of-the-art online ensemble methods

    Heterogeneous ensemble selection for evolving data streams. [Dataset]

    Get PDF
    Ensemble learning has been widely applied to both batch data classification and streaming data classification. For the latter setting, most existing ensemble systems are homogenous, which means they are generated from only one type of learning model. In contrast, by combining several types of different learning models, a heterogeneous ensemble system can achieve greater diversity among its members, which helps to improve its performance. Although heterogeneous ensemble systems have achieved many successes in the batch classification setting, it is not trivial to extend them directly to the data stream setting. In this study, we propose a novel HEterogeneous Ensemble Selection (HEES) method, which dynamically selects an appropriate subset of base classifiers to predict data under the stream setting. We are inspired by the observation that a well-chosen subset of good base classifiers may outperform the whole ensemble system. Here, we define a good candidate as one that expresses not only high predictive performance but also high confidence in its prediction. Our selection process is thus divided into two sub-processes: accurate-candidate selection and confident-candidate selection. We define an accurate candidate in the stream context as a base classifier with high accuracy over the current concept, while a confident candidate as one with a confidence score higher than a certain threshold. In the first sub-process, we employ the prequential accuracy to estimate the performance of a base classifier at a specific time, while in the latter sub-process, we propose a new measure to quantify the predictive confidence and provide a method to learn the threshold incrementally. The final ensemble is formed by taking the intersection of the sets of confident classifiers and accurate classifiers. Experiments on a wide range of data streams show that the proposed method achieves competitive performance with lower running time in comparison to the state-of-the-art online ensemble methods. The supplementary data presented here show the results of these experiments, as well as providing more information about the list of data streams used

    Drug–target interaction prediction with Bipartite Local Models and hubness-aware regression

    Get PDF
    Computational prediction of drug–target interactions is an essential task with various applications in the pharmaceutical industry, such as adverse effect prediction or drug repositioning. Recently, expert systems based on machine learning have been applied to drug–target interaction prediction. Although hubness-aware machine learning techniques are among the most promising approaches, their potential to enhance drug–target interaction prediction methods has not been exploited yet. In this paper, we extend the Bipartite Local Model (BLM), one of the most prominent interaction prediction methods. In particular, we use BLM with a hubness-aware regression technique, ECkNN. We represent drugs and targets in the similarity space with rich set of features (i.e., chemical, genomic and interaction features), and build a projection-based ensemble of BLMs. In order to assist reproducibility of our work as well as comparison to published results, we perform experiments on widely used publicly available drug-target interaction datasets. The results show that our approach outperforms state-of-the-art drug-target prediction techniques. Additionally, we demonstrate the feasibility of predictions from the point of view of applications

    Collaborative decision making by ensemble rule based classification systems

    Get PDF

    Coupling different methods for overcoming the class imbalance problem

    Get PDF
    Many classification problems must deal with imbalanced datasets where one class \u2013 the majority class \u2013 outnumbers the other classes. Standard classification methods do not provide accurate predictions in this setting since classification is generally biased towards the majority class. The minority classes are oftentimes the ones of interest (e.g., when they are associated with pathological conditions in patients), so methods for handling imbalanced datasets are critical. Using several different datasets, this paper evaluates the performance of state-of-the-art classification methods for handling the imbalance problem in both binary and multi-class datasets. Different strategies are considered, including the one-class and dimension reduction approaches, as well as their fusions. Moreover, some ensembles of classifiers are tested, in addition to stand-alone classifiers, to assess the effectiveness of ensembles in the presence of imbalance. Finally, a novel ensemble of ensembles is designed specifically to tackle the problem of class imbalance: the proposed ensemble does not need to be tuned separately for each dataset and outperforms all the other tested approaches. To validate our classifiers we resort to the KEEL-dataset repository, whose data partitions (training/test) are publicly available and have already been used in the open literature: as a consequence, it is possible to report a fair comparison among different approaches in the literature. Our best approach (MATLAB code and datasets not easily accessible elsewhere) will be available at https://www.dei.unipd.it/node/2357
    • 

    corecore